Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 15;340(Pt 3):813–819.

Interaction of mammalian neprilysin with binding protein and calnexin in Schizosaccharomyces pombe.

H Beaulieu 1, A Elagöz 1, P Crine 1, L A Rokeach 1
PMCID: PMC1220315  PMID: 10359668

Abstract

Neutral endopeptidase (neprilysin or NEP, EC 3.4.24.11) is a zinc metallo-endopeptidase expressed in many eukaryotic cell types and displaying several important physiological roles. In the brain (and central nervous system), this enzyme is involved in the molecular mechanism of pain by its action in the degradation of enkephalin molecules. In the kidney, NEP is implicated in the degradation of regulatory factors involved in the control of arterial pressure, including atrial natriuretic peptide and bradykinin. In this study we assessed the potential of the fission yeast Schizosaccharomyces pombe to overproduce rabbit NEP and secreted NEP (sNEP, a soluble derivative of this integral membrane protein). Both recombinant NEP and sNEP were produced at high levels (5 mg/l) in this system. Enzymic studies revealed that these recombinant proteins were fully active and exhibit kinetic parameters similar to those of the bona fide enzyme. Immunofluorescence microscopy and enzymic assays demonstrated that recombinant NEP is correctly targeted to the cell membrane. Furthermore, co-immunoprecipitation studies showed that folding intermediates of NEP and sNEP, produced in S. pombe, interact in the endoplasmic reticulum (ER) with binding protein (BiP) and calnexin (Cnx1p). The amount of sNEP coprecipitated with both BiP and Cnx1p augmented when cells were subjected to various stresses causing the accumulation of unfolded proteins in the ER. The interactions of NEP with BiP and Cnx1p were, however, more refractive to the same stresses.

Full Text

The Full Text of this article is available as a PDF (165.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basi G., Schmid E., Maundrell K. TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene. 1993 Jan 15;123(1):131–136. doi: 10.1016/0378-1119(93)90552-e. [DOI] [PubMed] [Google Scholar]
  2. Benchetrit T., Bissery V., Mornon J. P., Devault A., Crine P., Roques B. P. Primary structure homologies between two zinc metallopeptidases, the neutral endopeptidase 24.11 ("enkephalinase") and thermolysin, through clustering analysis. Biochemistry. 1988 Jan 26;27(2):592–596. doi: 10.1021/bi00402a014. [DOI] [PubMed] [Google Scholar]
  3. Bowes M. A., Kenny A. J. Endopeptidase-24.11 in pig lymph nodes. Purification and immunocytochemical localization in reticular cells. Biochem J. 1986 Jun 15;236(3):801–810. doi: 10.1042/bj2360801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cannon K. S., Hebert D. N., Helenius A. Glycan-dependent and -independent association of vesicular stomatitis virus G protein with calnexin. J Biol Chem. 1996 Jun 14;271(24):14280–14284. doi: 10.1074/jbc.271.24.14280. [DOI] [PubMed] [Google Scholar]
  5. Connelly J. C., Skidgel R. A., Schulz W. W., Johnson A. R., Erdös E. G. Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8737–8741. doi: 10.1073/pnas.82.24.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corbeil D., Boileau G., Lemay G., Crine P. Expression and polarized apical secretion in Madin-Darby canine kidney cells of a recombinant soluble form of neutral endopeptidase lacking the cytosolic and transmembrane domains. J Biol Chem. 1992 Feb 5;267(4):2798–2801. [PubMed] [Google Scholar]
  7. Crine P., LeGrimellec C., Lemieux E., Labonté L., Fortin S., Blachier A., Aubry M. The production and characterization of a monoclonal antibody specific for the 94,000 dalton enkephalin-degrading peptidase from rabbit kidney brush border. Biochem Biophys Res Commun. 1985 Aug 30;131(1):255–261. doi: 10.1016/0006-291x(85)91796-6. [DOI] [PubMed] [Google Scholar]
  8. Danielsen E. M., Vyas J. P., Kenny A. J. A neutral endopeptidase in the microvillar membrane of pig intestine. Partial purification and properties. Biochem J. 1980 Nov 1;191(2):645–648. doi: 10.1042/bj1910645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devault A., Lazure C., Nault C., Le Moual H., Seidah N. G., Chrétien M., Kahn P., Powell J., Mallet J., Beaumont A. Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J. 1987 May;6(5):1317–1322. doi: 10.1002/j.1460-2075.1987.tb02370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dion N., Le Moual H., Fournié-Zaluski M. C., Roques B. P., Crine P., Boileau G. Evidence that Asn542 of neprilysin (EC 3.4.24.11) is involved in binding of the P2' residue of substrates and inhibitors. Biochem J. 1995 Oct 15;311(Pt 2):623–627. doi: 10.1042/bj3110623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fossiez F., Lemay G., Labonté N., Parmentier-Lesage F., Boileau G., Crine P. Secretion of a functional soluble form of neutral endopeptidase-24.11 from a baculovirus-infected insect cell line. Biochem J. 1992 May 15;284(Pt 1):53–59. doi: 10.1042/bj2840053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gee N. S., Bowes M. A., Buck P., Kenny A. J. An immunoradiometric assay for endopeptidase-24.11 shows it to be a widely distributed enzyme in pig tissues. Biochem J. 1985 May 15;228(1):119–126. doi: 10.1042/bj2280119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hammond C., Braakman I., Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913–917. doi: 10.1073/pnas.91.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell. 1994 Mar;5(3):253–265. doi: 10.1091/mbc.5.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Howell S., Lanctôt C., Boileau G., Crine P. Expression of an enzymically active glycosylphosphatidylinositol-anchored form of neutral endopeptidase (EC 3.4.24.11) in Cos-1 cells. Biochem J. 1994 Apr 1;299(Pt 1):171–176. doi: 10.1042/bj2990171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jannatipour M., Callejo M., Parodi A. J., Armstrong J., Rokeach L. A. Calnexin and BiP interact with acid phosphatase independently of glucose trimming and reglucosylation in Schizosaccharomyces pombe. Biochemistry. 1998 Dec 8;37(49):17253–17261. doi: 10.1021/bi981785c. [DOI] [PubMed] [Google Scholar]
  17. Johnson A. R., Ashton J., Schulz W. W., Erdös E. G. Neutral metalloendopeptidase in human lung tissue and cultured cells. Am Rev Respir Dis. 1985 Sep;132(3):564–568. doi: 10.1164/arrd.1985.132.3.564. [DOI] [PubMed] [Google Scholar]
  18. Kerr M. A., Kenny A. J. The molecular weight and properties of a neutral metallo-endopeptidase from rabbit kidney brush border. Biochem J. 1974 Mar;137(3):489–495. doi: 10.1042/bj1370489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim P. S., Arvan P. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol. 1995 Jan;128(1-2):29–38. doi: 10.1083/jcb.128.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kohno K., Normington K., Sambrook J., Gething M. J., Mori K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol. 1993 Feb;13(2):877–890. doi: 10.1128/mcb.13.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lanctôt C., Fournier H., Howell S., Boileau G., Crine P. Direct targeting of neutral endopeptidase (EC 3.4.24.11) to the apical cell surface of transfected LLC-PK1 cells and unpolarized secretion of its soluble form. Biochem J. 1995 Jan 1;305(Pt 1):165–171. doi: 10.1042/bj3050165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lemay G., Waksman G., Roques B. P., Crine P., Boileau G. Fusion of a cleavable signal peptide to the ectodomain of neutral endopeptidase (EC 3.4.24.11) results in the secretion of an active enzyme in COS-1 cells. J Biol Chem. 1989 Sep 15;264(26):15620–15623. [PubMed] [Google Scholar]
  24. Malfroy B., Swerts J. P., Guyon A., Roques B. P., Schwartz J. C. High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature. 1978 Nov 30;276(5687):523–526. doi: 10.1038/276523a0. [DOI] [PubMed] [Google Scholar]
  25. Marcil J., Anand-Srivastava M. B. Defective ANF-R2/ANP-C receptor-mediated signalling in hypertension. Mol Cell Biochem. 1995 Aug-Sep;149-150:223–231. doi: 10.1007/BF01076581. [DOI] [PubMed] [Google Scholar]
  26. Matsas R., Fulcher I. S., Kenny A. J., Turner A. J. Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci U S A. 1983 May;80(10):3111–3115. doi: 10.1073/pnas.80.10.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 1993 Jan 15;123(1):127–130. doi: 10.1016/0378-1119(93)90551-d. [DOI] [PubMed] [Google Scholar]
  28. Maundrell K. nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem. 1990 Jul 5;265(19):10857–10864. [PubMed] [Google Scholar]
  29. Moreno S., Ruíz T., Sánchez Y., Villanueva J. R., Rodríguez L. Subcellular localization and glycoprotein nature of the invertase from the fission yeast Schizosaccharomyces pombe. Arch Microbiol. 1985 Sep;142(4):370–374. doi: 10.1007/BF00491906. [DOI] [PubMed] [Google Scholar]
  30. Ora A., Helenius A. Calnexin fails to associate with substrate proteins in glucosidase-deficient cell lines. J Biol Chem. 1995 Nov 3;270(44):26060–26062. doi: 10.1074/jbc.270.44.26060. [DOI] [PubMed] [Google Scholar]
  31. Partaledis J. A., Berlin V. The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5450–5454. doi: 10.1073/pnas.90.12.5450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pidoux A. L., Armstrong J. The BiP protein and the endoplasmic reticulum of Schizosaccharomyces pombe: fate of the nuclear envelope during cell division. J Cell Sci. 1993 Aug;105(Pt 4):1115–1120. doi: 10.1242/jcs.105.4.1115. [DOI] [PubMed] [Google Scholar]
  33. Rajagopalan S., Xu Y., Brenner M. B. Retention of unassembled components of integral membrane proteins by calnexin. Science. 1994 Jan 21;263(5145):387–390. doi: 10.1126/science.8278814. [DOI] [PubMed] [Google Scholar]
  34. Rodan A. R., Simons J. F., Trombetta E. S., Helenius A. N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. EMBO J. 1996 Dec 16;15(24):6921–6930. [PMC free article] [PubMed] [Google Scholar]
  35. Romanos M. A., Scorer C. A., Clare J. J. Foreign gene expression in yeast: a review. Yeast. 1992 Jun;8(6):423–488. doi: 10.1002/yea.320080602. [DOI] [PubMed] [Google Scholar]
  36. Roques B. P., Fournié-Zaluski M. C., Soroca E., Lecomte J. M., Malfroy B., Llorens C., Schwartz J. C. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature. 1980 Nov 20;288(5788):286–288. doi: 10.1038/288286a0. [DOI] [PubMed] [Google Scholar]
  37. Roques B. P., Noble F., Crine P., Fournié-Zaluski M. C. Inhibitors of neprilysin: design, pharmacological and clinical applications. Methods Enzymol. 1995;248:263–283. doi: 10.1016/0076-6879(95)48019-6. [DOI] [PubMed] [Google Scholar]
  38. Seymour A. A., Abboa-Offei B. E., Smith P. L., Mathers P. D., Asaad M. M., Rogers W. L. Potentiation of natriuretic peptides by neutral endopeptidase inhibitors. Clin Exp Pharmacol Physiol. 1995 Jan;22(1):63–69. doi: 10.1111/j.1440-1681.1995.tb01920.x. [DOI] [PubMed] [Google Scholar]
  39. Wada I., Ou W. J., Liu M. C., Scheele G. Chaperone function of calnexin for the folding intermediate of gp80, the major secretory protein in MDCK cells. Regulation by redox state and ATP. J Biol Chem. 1994 Mar 11;269(10):7464–7472. [PubMed] [Google Scholar]
  40. Zapun A., Petrescu S. M., Rudd P. M., Dwek R. A., Thomas D. Y., Bergeron J. J. Conformation-independent binding of monoglucosylated ribonuclease B to calnexin. Cell. 1997 Jan 10;88(1):29–38. doi: 10.1016/s0092-8674(00)81855-3. [DOI] [PubMed] [Google Scholar]
  41. Ziegler F. D., Gemmill T. R., Trimble R. B. Glycoprotein synthesis in yeast. Early events in N-linked oligosaccharide processing in Schizosaccharomyces pombe. J Biol Chem. 1994 Apr 29;269(17):12527–12535. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES