Abstract
Cytochrome P450 3A4 (CYP3A4) plays a prominent role in the metabolism of a vast array of drugs and xenobiotics and exhibits broad substrate specificities. Most cytochrome P450-mediated reactions follow simple Michaelis-Menten kinetics. These parameters are widely accepted to predict pharmacokinetic and pharmacodynamic consequences in vivo caused by exposure to one or multiple drugs. However, CYP3A4 in many cases exhibits allosteric (sigmoidal) characteristics that make the Michaelis constants difficult to estimate. In the present study, diazepam, temazepam and nordiazepam were employed as substrates of CYP3A4 to propose a kinetic model. The model hypothesized that CYP3A4 contains two substrate-binding sites in a single active site that are both distinct and co-operative, and the resulting velocity equation had a good fit with the sigmoidal kinetic observations. Therefore, four pairs of the kinetic estimates (KS1, kalpha, KS2, kbeta, KS3, kdelta, KS4 and kgamma) were resolved to interpret the features of binding affinity and catalytic ability of CYP3A4. Dissociation constants KS1 and KS2 for two single-substrate-bound enzyme molecules (SE and ES) were 3-50-fold greater than KS3 and KS4 for a two-substrate-bound enzyme (SES), while respective rate constants kdelta and kgamma were 3-218-fold greater than kalpha and kbeta, implying that access and binding of the first molecule to either site in an active pocket of CYP3A4 can enhance the binding affinity and reaction rate of the vacant site for the second substrate. Thus our results provide some new insights into the co-operative binding of two substrates in the inner portions of an allosteric CYP3A4 active site.
Full Text
The Full Text of this article is available as a PDF (178.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ATKINSON D. E., HATHAWAY J. A., SMITH E. C. KINETICS OF REGULATORY ENZYMES. KINETIC ORDER OF THE YEAST DIPHOSPHOPYRIDINE NUCLEOTIDE ISOCITRATE DEHYDROGENASE REACTION AND A MODEL FOR THE REACTION. J Biol Chem. 1965 Jun;240:2682–2690. [PubMed] [Google Scholar]
- Andersson T., Miners J. O., Veronese M. E., Birkett D. J. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994 Aug;38(2):131–137. doi: 10.1111/j.1365-2125.1994.tb04336.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertilsson L., Baillie T. A., Reviriego J. Factors influencing the metabolism of diazepam. Pharmacol Ther. 1990;45(1):85–91. doi: 10.1016/0163-7258(90)90009-q. [DOI] [PubMed] [Google Scholar]
- Gelboin H. V., Krausz K. W., Goldfarb I., Buters J. T., Yang S. K., Gonzalez F. J., Korzekwa K. R., Shou M. Inhibitory and non-inhibitory monoclonal antibodies to human cytochrome P450 3A3/4. Biochem Pharmacol. 1995 Nov 27;50(11):1841–1850. doi: 10.1016/0006-2952(95)02077-2. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Gelboin H. V. Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev. 1994;26(1-2):165–183. doi: 10.3109/03602539409029789. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Schmid B. J., Umeno M., Mcbride O. W., Hardwick J. P., Meyer U. A., Gelboin H. V., Idle J. R. Human P450PCN1: sequence, chromosome localization, and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase. DNA. 1988 Mar;7(2):79–86. doi: 10.1089/dna.1988.7.79. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
- Guengerich F. P. Enzymatic oxidation of xenobiotic chemicals. Crit Rev Biochem Mol Biol. 1990;25(2):97–153. doi: 10.3109/10409239009090607. [DOI] [PubMed] [Google Scholar]
- Harlow G. R., Halpert J. R. Analysis of human cytochrome P450 3A4 cooperativity: construction and characterization of a site-directed mutant that displays hyperbolic steroid hydroxylation kinetics. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6636–6641. doi: 10.1073/pnas.95.12.6636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper W. D., Watt J. A., McKinnon G. E., Reilly P. E. Metabolism of diazepam and related benzodiazepines by human liver microsomes. Eur J Drug Metab Pharmacokinet. 1992 Jan-Mar;17(1):51–59. doi: 10.1007/BF03189988. [DOI] [PubMed] [Google Scholar]
- Jansson I., Tamburini P. P., Favreau L. V., Schenkman J. B. The interaction of cytochrome b5 with four cytochrome P-450 enzymes from the untreated rat. Drug Metab Dispos. 1985 Jul-Aug;13(4):453–458. [PubMed] [Google Scholar]
- Jung F., Richardson T. H., Raucy J. L., Johnson E. F. Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K(M) diazepam N-demethylases. Drug Metab Dispos. 1997 Feb;25(2):133–139. [PubMed] [Google Scholar]
- Kerr B. M., Thummel K. E., Wurden C. J., Klein S. M., Kroetz D. L., Gonzalez F. J., Levy R. H. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol. 1994 Jun 1;47(11):1969–1979. doi: 10.1016/0006-2952(94)90071-x. [DOI] [PubMed] [Google Scholar]
- Koley A. P., Buters J. T., Robinson R. C., Markowitz A., Friedman F. K. CO binding kinetics of human cytochrome P450 3A4. Specific interaction of substrates with kinetically distinguishable conformers. J Biol Chem. 1995 Mar 10;270(10):5014–5018. doi: 10.1074/jbc.270.10.5014. [DOI] [PubMed] [Google Scholar]
- Koley A. P., Robinson R. C., Friedman F. K. Cytochrome P450 conformation and substrate interactions as probed by CO binding kinetics. Biochimie. 1996;78(8-9):706–713. doi: 10.1016/s0300-9084(97)82528-x. [DOI] [PubMed] [Google Scholar]
- Korzekwa K. R., Krishnamachary N., Shou M., Ogai A., Parise R. A., Rettie A. E., Gonzalez F. J., Tracy T. S. Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry. 1998 Mar 24;37(12):4137–4147. doi: 10.1021/bi9715627. [DOI] [PubMed] [Google Scholar]
- Neville C. F., Ninomiya S., Shimada N., Kamataki T., Imaoka S., Funae Y. Characterization of specific cytochrome P450 enzymes responsible for the metabolism of diazepam in hepatic microsomes of adult male rats. Biochem Pharmacol. 1993 Jan 7;45(1):59–65. doi: 10.1016/0006-2952(93)90377-9. [DOI] [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
- Ono S., Hatanaka T., Miyazawa S., Tsutsui M., Aoyama T., Gonzalez F. J., Satoh T. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica. 1996 Nov;26(11):1155–1166. doi: 10.3109/00498259609050260. [DOI] [PubMed] [Google Scholar]
- Patten C. J., Ishizaki H., Aoyama T., Lee M., Ning S. M., Huang W., Gonzalez F. J., Yang C. S. Catalytic properties of the human cytochrome P450 2E1 produced by cDNA expression in mammalian cells. Arch Biochem Biophys. 1992 Nov 15;299(1):163–171. doi: 10.1016/0003-9861(92)90258-x. [DOI] [PubMed] [Google Scholar]
- Reilly P. E., Thompson D. A., Mason S. R., Hooper W. D. Cytochrome P450IIIA enzymes in rat liver microsomes: involvement in C3-hydroxylation of diazepam and nordazepam but not N-dealkylation of diazepam and temazepam. Mol Pharmacol. 1990 May;37(5):767–774. [PubMed] [Google Scholar]
- Schmider J., Greenblatt D. J., von Moltke L. L., Harmatz J. S., Shader R. I. N-demethylation of amitriptyline in vitro: role of cytochrome P-450 3A (CYP3A) isoforms and effect of metabolic inhibitors. J Pharmacol Exp Ther. 1995 Nov;275(2):592–597. [PubMed] [Google Scholar]
- Schwab G. E., Raucy J. L., Johnson E. F. Modulation of rabbit and human hepatic cytochrome P-450-catalyzed steroid hydroxylations by alpha-naphthoflavone. Mol Pharmacol. 1988 May;33(5):493–499. [PubMed] [Google Scholar]
- Shou M., Grogan J., Mancewicz J. A., Krausz K. W., Gonzalez F. J., Gelboin H. V., Korzekwa K. R. Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry. 1994 May 31;33(21):6450–6455. doi: 10.1021/bi00187a009. [DOI] [PubMed] [Google Scholar]
- Swanson B. A., Dutton D. R., Lunetta J. M., Yang C. S., Ortiz de Montellano P. R. The active sites of cytochromes P450 IA1, IIB1, IIB2, and IIE1. Topological analysis by in situ rearrangement of phenyl-iron complexes. J Biol Chem. 1991 Oct 15;266(29):19258–19264. [PubMed] [Google Scholar]
- Ueng Y. F., Kuwabara T., Chun Y. J., Guengerich F. P. Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry. 1997 Jan 14;36(2):370–381. doi: 10.1021/bi962359z. [DOI] [PubMed] [Google Scholar]
- Usanov S. A., Honkakoski P., Lang M., Hanninen O. Vzaimodeistvie kumaringidroksiliruiushchego tsitokhroma P-450coh mikrosom pecheni myshei, indutsirovannykh pirazolom, s thitokhromom B5. Biokhimiia. 1990 Jun;55(6):995–1007. [PubMed] [Google Scholar]
- Wang P. P., Beaune P., Kaminsky L. S., Dannan G. A., Kadlubar F. F., Larrey D., Guengerich F. P. Purification and characterization of six cytochrome P-450 isozymes from human liver microsomes. Biochemistry. 1983 Nov 8;22(23):5375–5383. doi: 10.1021/bi00292a019. [DOI] [PubMed] [Google Scholar]
- Yamano S., Aoyama T., McBride O. W., Hardwick J. P., Gelboin H. V., Gonzalez F. J. Human NADPH-P450 oxidoreductase: complementary DNA cloning, sequence and vaccinia virus-mediated expression and localization of the CYPOR gene to chromosome 7. Mol Pharmacol. 1989 Jul;36(1):83–88. [PubMed] [Google Scholar]
- Yang T. J., Shou M., Korzekwa K. R., Gonzalez F. J., Gelboin H. V., Yang S. K. Role of cDNA-expressed human cytochromes P450 in the metabolism of diazepam. Biochem Pharmacol. 1998 Mar 15;55(6):889–896. doi: 10.1016/s0006-2952(97)00558-3. [DOI] [PubMed] [Google Scholar]
- Zomorodi K., Carlile D. J., Houston J. B. Kinetics of diazepam metabolism in rat hepatic microsomes and hepatocytes and their use in predicting in vivo hepatic clearance. Xenobiotica. 1995 Sep;25(9):907–916. doi: 10.3109/00498259509046662. [DOI] [PubMed] [Google Scholar]