Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 1;341(Pt 1):25–31.

Intramolecular chaperone and inhibitor activities of a propeptide from a bacterial zinc aminopeptidase.

S Nirasawa 1, Y Nakajima 1, Z Z Zhang 1, M Yoshida 1, K Hayashi 1
PMCID: PMC1220326  PMID: 10377241

Abstract

An aminopeptidase from Aeromonas caviae T-64 was translated as a preproprotein consisting of three domains; a signal peptide (19 amino acid residues), an N-terminal propeptide (101 residues) and a mature region (273 residues). We demonstrated that a proteinase, which was isolated from the culture filtrate of A. caviae T-64, activated the recombinant pro-aminopeptidase by removal of the majority of the propeptide. Using L-Leu-p-nitroanilide as a substrate, the processed aminopeptidase showed a large increase in kcat when compared with the unprocessed enzyme, whereas the Km value remained relatively unchanged. The similar Km values for the pro-aminopeptidase and the mature aminopeptidase indicated that the N-terminal propeptide of the pro-aminopeptidase did not influence the formation of the enzyme-substrate complex, suggesting the absence of marked conformational changes in the active domain. In contrast, the marked difference in kcat suggests a significant decrease in the energy of one or more of the transition states of the enzyme-substrate reaction coordinate. Moreover, we showed that the activity of the urea-denatured pro-aminopeptidase could be recovered by dialysis, whereas the activity of the urea-denatured mature aminopeptidase, which lacked the propeptide, could not. Further to this, the propeptide-deleted aminopeptidase formed an inclusion body in the cytoplasmic space in Escherichia coli and was not secreted at all. These results suggested that the propeptide of the pro-aminopeptidase acted as an intramolecular chaperone that was involved with the correct folding of the enzyme in vitro and was required for extracellular secretion in E. coli.

Full Text

The Full Text of this article is available as a PDF (165.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D., Shiau A. K., Agard D. A. The role of pro regions in protein folding. Curr Opin Cell Biol. 1993 Dec;5(6):966–970. doi: 10.1016/0955-0674(93)90078-5. [DOI] [PubMed] [Google Scholar]
  2. Baker D., Silen J. L., Agard D. A. Protease pro region required for folding is a potent inhibitor of the mature enzyme. Proteins. 1992 Apr;12(4):339–344. doi: 10.1002/prot.340120406. [DOI] [PubMed] [Google Scholar]
  3. Bennett B., Holz R. C. Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding. Biochemistry. 1997 Aug 12;36(32):9837–9846. doi: 10.1021/bi970735p. [DOI] [PubMed] [Google Scholar]
  4. Bryan P., Wang L., Hoskins J., Ruvinov S., Strausberg S., Alexander P., Almog O., Gilliland G., Gallagher T. Catalysis of a protein folding reaction: mechanistic implications of the 2.0 A structure of the subtilisin-prodomain complex. Biochemistry. 1995 Aug 15;34(32):10310–10318. doi: 10.1021/bi00032a026. [DOI] [PubMed] [Google Scholar]
  5. Chevrier B., D'Orchymont H., Schalk C., Tarnus C., Moras D. The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the co-catalytic unit. Eur J Biochem. 1996 Apr 15;237(2):393–398. doi: 10.1111/j.1432-1033.1996.0393k.x. [DOI] [PubMed] [Google Scholar]
  6. Chevrier B., Schalk C., D'Orchymont H., Rondeau J. M., Moras D., Tarnus C. Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure. 1994 Apr 15;2(4):283–291. doi: 10.1016/s0969-2126(00)00030-7. [DOI] [PubMed] [Google Scholar]
  7. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  8. Fusek M., Mares M., Vágner J., Voburka Z., Baudys M. Inhibition of aspartic proteinases by propart peptides of human procathepsin D and chicken pepsinogen. FEBS Lett. 1991 Aug 5;287(1-2):160–162. doi: 10.1016/0014-5793(91)80040-a. [DOI] [PubMed] [Google Scholar]
  9. Gallagher T., Gilliland G., Wang L., Bryan P. The prosegment-subtilisin BPN' complex: crystal structure of a specific 'foldase'. Structure. 1995 Sep 15;3(9):907–914. doi: 10.1016/S0969-2126(01)00225-8. [DOI] [PubMed] [Google Scholar]
  10. García-Sáez I., Reverter D., Vendrell J., Avilés F. X., Coll M. The three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of the inhibition, activation and intrinsic activity of the zymogen. EMBO J. 1997 Dec 1;16(23):6906–6913. doi: 10.1093/emboj/16.23.6906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Groves W. E., Davis F. C., Jr, Sells B. H. Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Anal Biochem. 1968 Feb;22(2):195–210. doi: 10.1016/0003-2697(68)90307-2. [DOI] [PubMed] [Google Scholar]
  12. Guasch A., Coll M., Avilés F. X., Huber R. Three-dimensional structure of porcine pancreatic procarboxypeptidase A. A comparison of the A and B zymogens and their determinants for inhibition and activation. J Mol Biol. 1992 Mar 5;224(1):141–157. doi: 10.1016/0022-2836(92)90581-4. [DOI] [PubMed] [Google Scholar]
  13. Guenet C., Lepage P., Harris B. A. Isolation of the leucine aminopeptidase gene from Aeromonas proteolytica. Evidence for an enzyme precursor. J Biol Chem. 1992 Apr 25;267(12):8390–8395. [PubMed] [Google Scholar]
  14. Hartsuck J. A., Koelsch G., Remington S. J. The high-resolution crystal structure of porcine pepsinogen. Proteins. 1992 May;13(1):1–25. doi: 10.1002/prot.340130102. [DOI] [PubMed] [Google Scholar]
  15. Ikemura H., Takagi H., Inouye M. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem. 1987 Jun 5;262(16):7859–7864. [PubMed] [Google Scholar]
  16. Inouye M. Intramolecular chaperone: the role of the pro-peptide in protein folding. Enzyme. 1991;45(5-6):314–321. doi: 10.1159/000468904. [DOI] [PubMed] [Google Scholar]
  17. James M. N., Sielecki A. R. Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution. Nature. 1986 Jan 2;319(6048):33–38. doi: 10.1038/319033a0. [DOI] [PubMed] [Google Scholar]
  18. Khan A. R., James M. N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998 Apr;7(4):815–836. doi: 10.1002/pro.5560070401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. King J., Laemmli U. K. Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 1971 Dec 28;62(3):465–477. doi: 10.1016/0022-2836(71)90148-3. [DOI] [PubMed] [Google Scholar]
  20. Kojima S., Minagawa T., Miura K. Tertiary structure formation in the propeptide of subtilisin BPN' by successive amino acid replacements and its close relation to function. J Mol Biol. 1998 Apr 17;277(5):1007–1013. doi: 10.1006/jmbi.1998.1671. [DOI] [PubMed] [Google Scholar]
  21. Kojima S., Minagawa T., Miura K. The propeptide of subtilisin BPN' as a temporary inhibitor and effect of an amino acid replacement on its inhibitory activity. FEBS Lett. 1997 Jul 7;411(1):128–132. doi: 10.1016/s0014-5793(97)00678-9. [DOI] [PubMed] [Google Scholar]
  22. Lee Y. C., Miyata Y., Terada I., Ohta T., Matsuzawa H. Involvement of NH2-terminal pro-sequence in the production of active aqualysin I (a thermophilic serine protease) in Escherichia coli. Agric Biol Chem. 1991 Dec;55(12):3027–3032. [PubMed] [Google Scholar]
  23. Li Y., Hu Z., Jordan F., Inouye M. Functional analysis of the propeptide of subtilisin E as an intramolecular chaperone for protein folding. Refolding and inhibitory abilities of propeptide mutants. J Biol Chem. 1995 Oct 20;270(42):25127–25132. doi: 10.1074/jbc.270.42.25127. [DOI] [PubMed] [Google Scholar]
  24. Mach L., Mort J. S., Glössl J. Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J Biol Chem. 1994 Apr 29;269(17):13030–13035. [PubMed] [Google Scholar]
  25. Mach L., Schwihla H., Stüwe K., Rowan A. D., Mort J. S., Glössl J. Activation of procathepsin B in human hepatoma cells: the conversion into the mature enzyme relies on the action of cathepsin B itself. Biochem J. 1993 Jul 15;293(Pt 2):437–442. doi: 10.1042/bj2930437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ohta Y., Hojo H., Aimoto S., Kobayashi T., Zhu X., Jordan F., Inouye M. Pro-peptide as an intramolecular chaperone: renaturation of denatured subtilisin E with a synthetic pro-peptide [corrected]. Mol Microbiol. 1991 Jun;5(6):1507–1510. doi: 10.1111/j.1365-2958.1991.tb00797.x. [DOI] [PubMed] [Google Scholar]
  27. Podobnik M., Kuhelj R., Turk V., Turk D. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. J Mol Biol. 1997 Sep 5;271(5):774–788. doi: 10.1006/jmbi.1997.1218. [DOI] [PubMed] [Google Scholar]
  28. Prescott J. M., Wilkes S. H. Aeromonas aminopeptidase. Methods Enzymol. 1976;45:530–543. doi: 10.1016/s0076-6879(76)45047-4. [DOI] [PubMed] [Google Scholar]
  29. Prescott J. M., Wilkes S. H. Aeromonas aminopeptidase: purification and some general properties. Arch Biochem Biophys. 1966 Nov;117(2):328–336. doi: 10.1016/0003-9861(66)90420-6. [DOI] [PubMed] [Google Scholar]
  30. Rawlings N. D., Barrett A. J. Evolutionary families of metallopeptidases. Methods Enzymol. 1995;248:183–228. doi: 10.1016/0076-6879(95)48015-3. [DOI] [PubMed] [Google Scholar]
  31. Rowan A. D., Mason P., Mach L., Mort J. S. Rat procathepsin B. Proteolytic processing to the mature form in vitro. J Biol Chem. 1992 Aug 5;267(22):15993–15999. [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shinde U. P., Liu J. J., Inouye M. Protein memory through altered folding mediated by intramolecular chaperones. Nature. 1997 Oct 2;389(6650):520–522. doi: 10.1038/39097. [DOI] [PubMed] [Google Scholar]
  34. Toma C., Honma Y. Cloning and genetic analysis of the Vibrio cholerae aminopeptidase gene. Infect Immun. 1996 Nov;64(11):4495–4500. doi: 10.1128/iai.64.11.4495-4500.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Turk D., Podobnik M., Kuhelj R., Dolinar M., Turk V. Crystal structures of human procathepsin B at 3.2 and 3.3 Angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS Lett. 1996 Apr 22;384(3):211–214. doi: 10.1016/0014-5793(96)00309-2. [DOI] [PubMed] [Google Scholar]
  36. Uren J. R., Neurath H. Intrinsic enzymatic activity of bovine procarboxypeptidase A S5. Biochemistry. 1974 Aug 13;13(17):3512–3520. doi: 10.1021/bi00714a016. [DOI] [PubMed] [Google Scholar]
  37. Van Heeke G., Denslow S., Watkins J. R., Wilson K. J., Wagner F. W. Cloning and nucleotide sequence of the Vibrio proteolyticus aminopeptidase gene. Biochim Biophys Acta. 1992 Jul 15;1131(3):337–340. doi: 10.1016/0167-4781(92)90037-z. [DOI] [PubMed] [Google Scholar]
  38. Wagner F. W., Wilkes S. H., Prescott J. M. Specificity of Aeromonas aminopeptidase toward amino acid amides and dipeptides. J Biol Chem. 1972 Feb 25;247(4):1208–1210. [PubMed] [Google Scholar]
  39. Wilkes S. H., Bayliss M. E., Prescott J. M. Specificity of aeromonas aminopeptidase toward oligopeptides and polypeptides. Eur J Biochem. 1973 May 2;34(3):459–466. doi: 10.1111/j.1432-1033.1973.tb02780.x. [DOI] [PubMed] [Google Scholar]
  40. Winther J. R., Sørensen P. Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9330–9334. doi: 10.1073/pnas.88.20.9330. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES