Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 1;341(Pt 1):81–87.

A monomer-dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA.

C M Palena 1, D H Gonzalez 1, R L Chan 1
PMCID: PMC1220332  PMID: 10377247

Abstract

We have analysed the interaction of the sunflower homeodomain leucine-zipper (Hd-Zip) protein Hahb-4 with DNA. The complete Hd-Zip domain from Hahb-4 was able to select specific sequences from a random oligonucleotide mixture that contained a 9-bp core with four fixed and five degenerate positions. Analysis of the binding of some of the selected sequences suggests that Hahb-4 preferentially binds the dyad-symmetrical sequence CAAT(A/T)ATTG. Single-nucleotide replacements at positions 1, 5 or 9 of this sequence produced a decrease in binding of 2-4-fold. DNA binding as a function of protein concentration was non-hyperbolic. This behaviour could be explained by an equation in which dimer formation is a pre-requisite for DNA binding. A global dissociation constant (Kd) of 1.31x10(-14) M2 could be calculated. The removal of the leucine zipper promoted a change in specificity and a decrease in binding affinity (Kd=5. 03x10(-5) M). Mutation of Phe-20 of the homeodomain into Leu completely abolished DNA binding. The mutant protein, however, was able to inhibit DNA binding by the non-mutant form, presumably through the formation of heterodimers. The analysis of this inhibitory effect at different mutant concentrations allowed the estimation of the Kd for the dimer-monomer equilibrium [about (2-4)x10(-6) M]; from this, a Kd of 3-6x10(-9) M for the dimer-DNA complex could be estimated. The results obtained indicate that the formation of dimers is the main factor influencing the interaction of Hahb-4 with DNA. It is proposed that shifts in a dimer-monomer equilibrium could be used within the cell to modulate the interaction of this protein with target genes.

Full Text

The Full Text of this article is available as a PDF (228.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bharathan G., Janssen B. J., Kellogg E. A., Sinha N. Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa? Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13749–13753. doi: 10.1073/pnas.94.25.13749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackwell T. K., Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science. 1990 Nov 23;250(4984):1104–1110. doi: 10.1126/science.2174572. [DOI] [PubMed] [Google Scholar]
  3. Carabelli M., Sessa G., Baima S., Morelli G., Ruberti I. The Arabidopsis Athb-2 and -4 genes are strongly induced by far-red-rich light. Plant J. 1993 Sep;4(3):469–479. doi: 10.1046/j.1365-313x.1993.04030469.x. [DOI] [PubMed] [Google Scholar]
  4. Chan R. L., Gago G. M., Palena C. M., Gonzalez D. H. Homeoboxes in plant development. Biochim Biophys Acta. 1998 Oct 23;1442(1):1–19. doi: 10.1016/s0167-4781(98)00119-5. [DOI] [PubMed] [Google Scholar]
  5. Chan R. L., Gonzalez D. H. A cDNA encoding an HD-zip protein from sunflower. Plant Physiol. 1994 Dec;106(4):1687–1688. doi: 10.1104/pp.106.4.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Damante G., Pellizzari L., Esposito G., Fogolari F., Viglino P., Fabbro D., Tell G., Formisano S., Di Lauro R. A molecular code dictates sequence-specific DNA recognition by homeodomains. EMBO J. 1996 Sep 16;15(18):4992–5000. [PMC free article] [PubMed] [Google Scholar]
  7. Gehring W. J., Affolter M., Bürglin T. Homeodomain proteins. Annu Rev Biochem. 1994;63:487–526. doi: 10.1146/annurev.bi.63.070194.002415. [DOI] [PubMed] [Google Scholar]
  8. Gehring W. J. Homeo boxes in the study of development. Science. 1987 Jun 5;236(4806):1245–1252. doi: 10.1126/science.2884726. [DOI] [PubMed] [Google Scholar]
  9. Gehring W. J., Qian Y. Q., Billeter M., Furukubo-Tokunaga K., Schier A. F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodomain-DNA recognition. Cell. 1994 Jul 29;78(2):211–223. doi: 10.1016/0092-8674(94)90292-5. [DOI] [PubMed] [Google Scholar]
  10. Gonzalez D. H., Valle E. M., Chan G. G. Interaction between proteins containing homeodomains associated to leucine zippers from sunflower. Biochim Biophys Acta. 1997 Mar 20;1351(1-2):137–149. doi: 10.1016/s0167-4781(96)00186-8. [DOI] [PubMed] [Google Scholar]
  11. Krylov D., Olive M., Vinson C. Extending dimerization interfaces: the bZIP basic region can form a coiled coil. EMBO J. 1995 Nov 1;14(21):5329–5337. doi: 10.1002/j.1460-2075.1995.tb00217.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laughon A. DNA binding specificity of homeodomains. Biochemistry. 1991 Dec 3;30(48):11357–11367. doi: 10.1021/bi00112a001. [DOI] [PubMed] [Google Scholar]
  13. Mattsson J., Söderman E., Svenson M., Borkird C., Engström P. A new homeobox-leucine zipper gene from Arabidopsis thaliana. Plant Mol Biol. 1992 Mar;18(5):1019–1022. doi: 10.1007/BF00019223. [DOI] [PubMed] [Google Scholar]
  14. Meijer A. H., Scarpella E., van Dijk E. L., Qin L., Taal A. J., Rueb S., Harrington S. E., McCouch S. R., Schilperoort R. A., Hoge J. H. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J. 1997 Feb;11(2):263–276. doi: 10.1046/j.1365-313x.1997.11020263.x. [DOI] [PubMed] [Google Scholar]
  15. Oliphant A. R., Brandl C. J., Struhl K. Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol. 1989 Jul;9(7):2944–2949. doi: 10.1128/mcb.9.7.2944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palena C. M., Gonzalez D. H., Guelman S. A., Chan R. L. Expression of sunflower homeodomain containing proteins in Escherichia coli: purification and functional studies. Protein Expr Purif. 1998 Jun;13(1):97–103. doi: 10.1006/prep.1998.0875. [DOI] [PubMed] [Google Scholar]
  17. Patel L. R., Curran T., Kerppola T. K. Energy transfer analysis of Fos-Jun dimerization and DNA binding. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7360–7364. doi: 10.1073/pnas.91.15.7360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ruberti I., Sessa G., Lucchetti S., Morelli G. A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 1991 Jul;10(7):1787–1791. doi: 10.1002/j.1460-2075.1991.tb07703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schena M., Davis R. W. HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3894–3898. doi: 10.1073/pnas.89.9.3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schena M., Davis R. W. Structure of homeobox-leucine zipper genes suggests a model for the evolution of gene families. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8393–8397. doi: 10.1073/pnas.91.18.8393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  22. Sessa G., Morelli G., Ruberti I. DNA-binding specificity of the homeodomain-leucine zipper domain. J Mol Biol. 1997 Dec 5;274(3):303–309. doi: 10.1006/jmbi.1997.1408. [DOI] [PubMed] [Google Scholar]
  23. Sessa G., Morelli G., Ruberti I. The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J. 1993 Sep;12(9):3507–3517. doi: 10.1002/j.1460-2075.1993.tb06025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shang Z., Isaac V. E., Li H., Patel L., Catron K. M., Curran T., Montelione G. T., Abate C. Design of a "minimAl" homeodomain: the N-terminal arm modulates DNA binding affinity and stabilizes homeodomain structure. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8373–8377. doi: 10.1073/pnas.91.18.8373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  26. Vollbrecht E., Veit B., Sinha N., Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991 Mar 21;350(6315):241–243. doi: 10.1038/350241a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES