Abstract
We have isolated a soluble import-competent 15 kDa N-terminal fragment of the overexpressed Nicotiana plumbaginifolia F1beta precursor of the ATP synthase (N15pF1beta). The isolation was achieved after chemical cleavage, with CNBr, of the insoluble precursor collected in inclusion bodies, followed by purification of the fragment using ion-exchange chromatography. The purity of the final product was estimated to be more than 99%. N15pF1beta contained a presequence of 54 amino acid residues (except for the N-terminal methionine residue) and 82 N-terminal residues of the mature protein. N15pF1beta was shown to be imported into isolated potato tuber mitochondria and to be processed by the isolated mitochondrial processing peptidase (MPP) integrated into the cytochrome bc1 complex of the respiratory chain. Addition of N15pF1beta at micromolar concentrations resulted in the inhibition of import of F1beta precursor and alternative oxidase precursor, synthesized in vitro, into isolated mitochondria as well as the processing of these precursors catalysed by the isolated MPP-bc1 complex. N15pF1beta conjugated via a biotin link to avidin blocked import sites even after the reisolation of mitochondria and inhibited the import of the mitochondrial precursors, indicating that it can be used as a substrate for the generation of a stable translocation intermediate. Our results present a novel procedure for the production of an N-terminal fragment of the F1beta precursor that contains all information necessary for mitochondrial targeting and processing and that can be used for structural and functional studies of the mitochondrial protein import system. This procedure has a general value because it can be used for the production of chemical quantities of any mitochondrial import substrate and presequence peptide.
Full Text
The Full Text of this article is available as a PDF (264.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolliger L., Junne T., Schatz G., Lithgow T. Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J. 1995 Dec 15;14(24):6318–6326. doi: 10.1002/j.1460-2075.1995.tb00322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boutry M., Chua N. H. A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia. EMBO J. 1985 Sep;4(9):2159–2165. doi: 10.1002/j.1460-2075.1985.tb03910.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cartwright P., Beilharz T., Hansen P., Garrett J., Lithgow T. Mft52, an acid-bristle protein in the cytosol that delivers precursor proteins to yeast mitochondria. J Biol Chem. 1997 Feb 21;272(8):5320–5325. doi: 10.1074/jbc.272.8.5320. [DOI] [PubMed] [Google Scholar]
- Chich J. F., Goldschmidt D., Thieffry M., Henry J. P. A peptide-sensitive channel of large conductance is localized on mitochondrial outer membrane. Eur J Biochem. 1991 Feb 26;196(1):29–35. doi: 10.1111/j.1432-1033.1991.tb15781.x. [DOI] [PubMed] [Google Scholar]
- Cyr D. M., Douglas M. G. Early events in the transport of proteins into mitochondria. Import competition by a mitochondrial presequence. J Biol Chem. 1991 Nov 15;266(32):21700–21708. [PubMed] [Google Scholar]
- Dekker P. J., Martin F., Maarse A. C., Bömer U., Müller H., Guiard B., Meijer M., Rassow J., Pfanner N. The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70-Tim44. EMBO J. 1997 Sep 1;16(17):5408–5419. doi: 10.1093/emboj/16.17.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dessi P., Smith M. K., Day D. A., Whelan J. Characterization of the import pathway of the F(A)d subunit of mitochondrial ATP synthase into isolated plant mitochondria. Arch Biochem Biophys. 1996 Nov 15;335(2):358–368. doi: 10.1006/abbi.1996.0517. [DOI] [PubMed] [Google Scholar]
- Emaus R. K., Grunwald R., Lemasters J. J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986 Jul 23;850(3):436–448. doi: 10.1016/0005-2728(86)90112-x. [DOI] [PubMed] [Google Scholar]
- Endo T., Nakayama Y., Nakai M. Avidin fusion protein as a tool to generate a stable translocation intermediate spanning the mitochondrial membranes. J Biochem. 1995 Oct;118(4):753–759. doi: 10.1093/oxfordjournals.jbchem.a124976. [DOI] [PubMed] [Google Scholar]
- Fölsch H., Guiard B., Neupert W., Stuart R. A. Internal targeting signal of the BCS1 protein: a novel mechanism of import into mitochondria. EMBO J. 1996 Feb 1;15(3):479–487. [PMC free article] [PubMed] [Google Scholar]
- Glaser E., Knorpp C., Hugosson M., von Stedingk E. Macromolecular movement into mitochondria. Methods Cell Biol. 1995;50:269–281. doi: 10.1016/s0091-679x(08)61036-5. [DOI] [PubMed] [Google Scholar]
- Glaser S. M., Cumsky M. G. A synthetic presequence reversibly inhibits protein import into yeast mitochondria. J Biol Chem. 1990 May 25;265(15):8808–8816. [PubMed] [Google Scholar]
- Green N. M. Avidin and streptavidin. Methods Enzymol. 1990;184:51–67. doi: 10.1016/0076-6879(90)84259-j. [DOI] [PubMed] [Google Scholar]
- Hachiya N., Komiya T., Alam R., Iwahashi J., Sakaguchi M., Omura T., Mihara K. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 1994 Nov 1;13(21):5146–5154. doi: 10.1002/j.1460-2075.1994.tb06844.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hugosson M., Andreu D., Boman H. G., Glaser E. Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import. Eur J Biochem. 1994 Aug 1;223(3):1027–1033. doi: 10.1111/j.1432-1033.1994.tb19081.x. [DOI] [PubMed] [Google Scholar]
- Hájek P., Koh J. Y., Jones L., Bedwell D. M. The amino terminus of the F1-ATPase beta-subunit precursor functions as an intramolecular chaperone to facilitate mitochondrial protein import. Mol Cell Biol. 1997 Dec;17(12):7169–7177. doi: 10.1128/mcb.17.12.7169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jascur T., Goldenberg D. P., Vestweber D., Schatz G. Sequential translocation of an artificial precursor protein across the two mitochondrial membranes. J Biol Chem. 1992 Jul 5;267(19):13636–13641. [PubMed] [Google Scholar]
- Jeng J. J., Weiner H. Purification and characterization of catalytically active precursor of rat liver mitochondrial aldehyde dehydrogenase expressed in Escherichia coli. Arch Biochem Biophys. 1991 Sep;289(2):214–222. doi: 10.1016/0003-9861(91)90464-t. [DOI] [PubMed] [Google Scholar]
- Juin P., Thieffry M., Henry J. P., Vallette F. M. Relationship between the peptide-sensitive channel and the mitochondrial outer membrane protein translocation machinery. J Biol Chem. 1997 Feb 28;272(9):6044–6050. doi: 10.1074/jbc.272.9.6044. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Langer T., Neupert W. Regulated protein degradation in mitochondria. Experientia. 1996 Dec 15;52(12):1069–1076. doi: 10.1007/BF01952104. [DOI] [PubMed] [Google Scholar]
- Liu X. Q., Bell A. W., Freeman K. B., Shore G. C. Topogenesis of mitochondrial inner membrane uncoupling protein. Rerouting transmembrane segments to the soluble matrix compartment. J Cell Biol. 1988 Aug;107(2):503–509. doi: 10.1083/jcb.107.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lohret T. A., Jensen R. E., Kinnally K. W. Tim23, a protein import component of the mitochondrial inner membrane, is required for normal activity of the multiple conductance channel, MCC. J Cell Biol. 1997 Apr 21;137(2):377–386. doi: 10.1083/jcb.137.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin J., Mahlke K., Pfanner N. Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. J Biol Chem. 1991 Sep 25;266(27):18051–18057. [PubMed] [Google Scholar]
- Matouschek A., Azem A., Ratliff K., Glick B. S., Schmid K., Schatz G. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 1997 Nov 17;16(22):6727–6736. doi: 10.1093/emboj/16.22.6727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mihara K., Omura T. Cytoplasmic chaperones in precursor targeting to mitochondria: the role of MSF and hsp 70. Trends Cell Biol. 1996 Mar;6(3):104–108. doi: 10.1016/0962-8924(96)81000-2. [DOI] [PubMed] [Google Scholar]
- Miller B. R., Cumsky M. G. Intramitochondrial sorting of the precursor to yeast cytochrome c oxidase subunit Va. J Cell Biol. 1993 Jun;121(5):1021–1029. doi: 10.1083/jcb.121.5.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami K., Amaya Y., Takiguchi M., Ebina Y., Mori M. Reconstitution of mitochondrial protein transport with purified ornithine carbamoyltransferase precursor expressed in Escherichia coli. J Biol Chem. 1988 Dec 5;263(34):18437–18442. [PubMed] [Google Scholar]
- Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66:863–917. doi: 10.1146/annurev.biochem.66.1.863. [DOI] [PubMed] [Google Scholar]
- Pfanner N., Craig E. A., Hönlinger A. Mitochondrial preprotein translocase. Annu Rev Cell Dev Biol. 1997;13:25–51. doi: 10.1146/annurev.cellbio.13.1.25. [DOI] [PubMed] [Google Scholar]
- Sanyal A., Getz G. S. Import of transcription factor MTF1 into the yeast mitochondria takes place through an unusual pathway. J Biol Chem. 1995 May 19;270(20):11970–11976. doi: 10.1074/jbc.270.20.11970. [DOI] [PubMed] [Google Scholar]
- Scaduto R. C., Jr, Grotyohann L. W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999 Jan;76(1 Pt 1):469–477. doi: 10.1016/S0006-3495(99)77214-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schülke N., Sepuri N. B., Pain D. In vivo zippering of inner and outer mitochondrial membranes by a stable translocation intermediate. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7314–7319. doi: 10.1073/pnas.94.14.7314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirrenberg C., Endres M., Becker K., Bauer M. F., Walther E., Neupert W., Brunner M. Functional cooperation and stoichiometry of protein translocases of the outer and inner membranes of mitochondria. J Biol Chem. 1997 Nov 21;272(47):29963–29966. doi: 10.1074/jbc.272.47.29963. [DOI] [PubMed] [Google Scholar]
- Vestweber D., Schatz G. A chimeric mitochondrial precursor protein with internal disulfide bridges blocks import of authentic precursors into mitochondria and allows quantitation of import sites. J Cell Biol. 1988 Dec;107(6 Pt 1):2037–2043. doi: 10.1083/jcb.107.6.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachter C., Schatz G., Glick B. S. Protein import into mitochondria: the requirement for external ATP is precursor-specific whereas intramitochondrial ATP is universally needed for translocation into the matrix. Mol Biol Cell. 1994 Apr;5(4):465–474. doi: 10.1091/mbc.5.4.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waegemann K., Soll J. Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem. 1996 Mar 15;271(11):6545–6554. doi: 10.1074/jbc.271.11.6545. [DOI] [PubMed] [Google Scholar]
- Whelan J., Tanudji M. R., Smith M. K., Day D. A. Evidence for a link between translocation and processing during protein import into soybean mitochondria. Biochim Biophys Acta. 1996 Jun 5;1312(1):48–54. doi: 10.1016/0167-4889(96)00014-6. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986 Jun;5(6):1335–1342. doi: 10.1002/j.1460-2075.1986.tb04364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Stedingk E. M., Pavlov P. F., Grinkevich V. A., Glaser E. Mitochondrial protein import: modification of sulfhydryl groups of the inner mitochondrial membrane import machinery in Solanum tuberosum inhibits protein import. Plant Mol Biol. 1997 Dec;35(6):809–820. doi: 10.1023/a:1005838028160. [DOI] [PubMed] [Google Scholar]