Abstract
The DmpA (d-aminopeptidase A) protein produced by Ochrobactrum anthropi hydrolyses p-nitroanilide derivatives of glycine and d-alanine more efficiently than that of l-alanine. When regular peptides are utilized as substrates, the enzyme behaves as an aminopeptidase with a preference for N-terminal residues in an l configuration, thus exemplifying an interesting case of stereospecificity reversal. The best-hydrolysed substrate is l-Ala-Gly-Gly, but tetra- and penta-peptides are also efficiently hydrolysed. The gene encodes a 375-residue precursor, but the active enzyme contains two polypeptides corresponding to residues 2-249 (alpha-subunit) and 250-375 (beta-subunit) of the precursor. Residues 249 and 250 are a Gly and a Ser respectively, and various substitutions performed by site-directed mutagenesis result in the production of an uncleaved and inactive protein. The N-terminal Ser residue of the beta-subunit is followed by a hydrophobic peptide, which is predicted to form a beta-strand structure. All these properties strongly suggest that DmpA is an N-terminal amidohydrolase. An exploration of the databases highlights the presence of a number of open reading frames encoding related proteins in various bacterial genomes. Thus DmpA is very probably the prototype of an original family of N-terminal hydrolases.
Full Text
The Full Text of this article is available as a PDF (221.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asano Y., Ito H., Dairi T., Kato Y. An alkaline D-stereospecific endopeptidase with beta-lactamase activity from Bacillus cereus. J Biol Chem. 1996 Nov 22;271(47):30256–30262. doi: 10.1074/jbc.271.47.30256. [DOI] [PubMed] [Google Scholar]
- Asano Y., Kato Y., Yamada A., Kondo K. Structural similarity of D-aminopeptidase to carboxypeptidase DD and beta-lactamases. Biochemistry. 1992 Mar 3;31(8):2316–2328. doi: 10.1021/bi00123a016. [DOI] [PubMed] [Google Scholar]
- Asano Y., Nakazawa A., Kato Y., Kondo K. Properties of a novel D-stereospecific aminopeptidase from Ochrobactrum anthropi. J Biol Chem. 1989 Aug 25;264(24):14233–14239. [PubMed] [Google Scholar]
- Barbero J. L., Buesa J. M., González de Buitrago G., Méndez E., Péz-Aranda A., García J. L. Complete nucleotide sequence of the penicillin acylase gene from Kluyvera citrophila. Gene. 1986;49(1):69–80. doi: 10.1016/0378-1119(86)90386-0. [DOI] [PubMed] [Google Scholar]
- Brannigan J. A., Dodson G., Duggleby H. J., Moody P. C., Smith J. L., Tomchick D. R., Murzin A. G. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature. 1995 Nov 23;378(6555):416–419. doi: 10.1038/378416a0. [DOI] [PubMed] [Google Scholar]
- Choi K. S., Kim J. A., Kang H. S. Effects of site-directed mutations on processing and activities of penicillin G acylase from Escherichia coli ATCC 11105. J Bacteriol. 1992 Oct;174(19):6270–6276. doi: 10.1128/jb.174.19.6270-6276.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
- De Meester F., Joris B., Reckinger G., Bellefroid-Bourguignon C., Frère J. M., Waley S. G. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem Pharmacol. 1987 Jul 15;36(14):2393–2403. doi: 10.1016/0006-2952(87)90609-5. [DOI] [PubMed] [Google Scholar]
- Fanuel L., Thamm I., Kostanjevecki V., Samyn B., Joris B., Goffin C., Brannigan J., Van Beeumen J., Frère J. M. Two new aminopeptidases from Ochrobactrum anthropi active on D-alanyl-p-nitroanilide. Cell Mol Life Sci. 1999 May;55(5):812–818. doi: 10.1007/s000180050334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frére J. M., Leyh-Bouille M., Ghuysen J. M., Nieto M., Perkins H. R. Exocellular DD-carboxypeptidases-transpeptidases from Streptomyces. Methods Enzymol. 1976;45:610–636. doi: 10.1016/s0076-6879(76)45054-1. [DOI] [PubMed] [Google Scholar]
- Gallagher T., Rozwarski D. A., Ernst S. R., Hackert M. L. Refined structure of the pyruvoyl-dependent histidine decarboxylase from Lactobacillus 30a. J Mol Biol. 1993 Mar 20;230(2):516–528. doi: 10.1006/jmbi.1993.1168. [DOI] [PubMed] [Google Scholar]
- Goraj K., Renard A., Martial J. A. Synthesis, purification and initial structural characterization of octarellin, a de novo polypeptide modelled on the alpha/beta-barrel proteins. Protein Eng. 1990 Mar;3(4):259–266. doi: 10.1093/protein/3.4.259. [DOI] [PubMed] [Google Scholar]
- Guan C., Cui T., Rao V., Liao W., Benner J., Lin C. L., Comb D. Activation of glycosylasparaginase. Formation of active N-terminal threonine by intramolecular autoproteolysis. J Biol Chem. 1996 Jan 19;271(3):1732–1737. doi: 10.1074/jbc.271.3.1732. [DOI] [PubMed] [Google Scholar]
- Holmquist M., Martinelle M., Berglund P., Clausen I. G., Patkar S., Svendsen A., Hult K. Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity. J Protein Chem. 1993 Dec;12(6):749–757. doi: 10.1007/BF01024933. [DOI] [PubMed] [Google Scholar]
- Kazlauskas R. J. Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties. Trends Biotechnol. 1994 Nov;12(11):464–472. doi: 10.1016/0167-7799(94)90022-1. [DOI] [PubMed] [Google Scholar]
- Ledent P., Duez C., Vanhove M., Lejeune A., Fonzé E., Charlier P., Rhazi-Filali F., Thamm I., Guillaume G., Samyn B. Unexpected influence of a C-terminal-fused His-tag on the processing of an enzyme and on the kinetic and folding parameters. FEBS Lett. 1997 Aug 18;413(2):194–196. doi: 10.1016/s0014-5793(97)00908-3. [DOI] [PubMed] [Google Scholar]
- Lubkowski J., Wlodawer A., Ammon H. L., Copeland T. D., Swain A. L. Structural characterization of Pseudomonas 7A glutaminase-asparaginase. Biochemistry. 1994 Aug 30;33(34):10257–10265. doi: 10.1021/bi00200a005. [DOI] [PubMed] [Google Scholar]
- Matsuda A., Komatsu K. I. Molecular cloning and structure of the gene for 7 beta-(4-carboxybutanamido)cephalosporanic acid acylase from a Pseudomonas strain. J Bacteriol. 1985 Sep;163(3):1222–1228. doi: 10.1128/jb.163.3.1222-1228.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuda A., Toma K., Komatsu K. Nucleotide sequences of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J Bacteriol. 1987 Dec;169(12):5821–5826. doi: 10.1128/jb.169.12.5821-5826.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mäntsälä P., Zalkin H. Glutamine amidotransferase function. Replacement of the active-site cysteine in glutamine phosphoribosylpyrophosphate amidotransferase by site-directed mutagenesis. J Biol Chem. 1984 Nov 25;259(22):14230–14236. [PubMed] [Google Scholar]
- Negoro S., Kakudo S., Urabe I., Okada H. A new nylon oligomer degradation gene (nylC) on plasmid pOAD2 from a Flavobacterium sp. J Bacteriol. 1992 Dec;174(24):7948–7953. doi: 10.1128/jb.174.24.7948-7953.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niven G. W., Holder S. A., Strøman P. A study of the substrate specificity of aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2. Appl Microbiol Biotechnol. 1995 Dec;44(1-2):100–105. doi: 10.1007/BF00164487. [DOI] [PubMed] [Google Scholar]
- Niven G. W. The characterization of two aminopeptidase activities from the cyanobacterium Anabaena flos-aquae. Biochim Biophys Acta. 1995 Dec 6;1253(2):193–198. doi: 10.1016/0167-4838(95)00175-0. [DOI] [PubMed] [Google Scholar]
- Oinonen C., Tikkanen R., Rouvinen J., Peltonen L. Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nat Struct Biol. 1995 Dec;2(12):1102–1108. doi: 10.1038/nsb1295-1102. [DOI] [PubMed] [Google Scholar]
- Pietrokovski S. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci. 1994 Dec;3(12):2340–2350. doi: 10.1002/pro.5560031218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds P. E., Depardieu F., Dutka-Malen S., Arthur M., Courvalin P. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol Microbiol. 1994 Sep;13(6):1065–1070. doi: 10.1111/j.1365-2958.1994.tb00497.x. [DOI] [PubMed] [Google Scholar]
- Schumacher G., Sizmann D., Haug H., Buckel P., Böck A. Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res. 1986 Jul 25;14(14):5713–5727. doi: 10.1093/nar/14.14.5713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seemuller E., Lupas A., Baumeister W. Autocatalytic processing of the 20S proteasome. Nature. 1996 Aug 1;382(6590):468–471. doi: 10.1038/382468a0. [DOI] [PubMed] [Google Scholar]
- Shao Y., Xu M. Q., Paulus H. Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process. Biochemistry. 1996 Mar 26;35(12):3810–3815. doi: 10.1021/bi952592h. [DOI] [PubMed] [Google Scholar]
- Sizmann D., Keilmann C., Böck A. Primary structure requirements for the maturation in vivo of penicillin acylase from Escherichia coli ATCC 11105. Eur J Biochem. 1990 Aug 28;192(1):143–151. doi: 10.1111/j.1432-1033.1990.tb19207.x. [DOI] [PubMed] [Google Scholar]
- Slade A., Horrocks A. J., Lindsay C. D., Dunbar B., Virden R. Site-directed chemical conversion of serine to cysteine in penicillin acylase from Escherichia coli ATCC 11105. Effect on conformation and catalytic activity. Eur J Biochem. 1991 Apr 10;197(1):75–80. doi: 10.1111/j.1432-1033.1991.tb15884.x. [DOI] [PubMed] [Google Scholar]
- Souciet J. L., Hermodson M. A., Zalkin H. Mutational analysis of the glutamine phosphoribosylpyrophosphate amidotransferase pro-peptide. J Biol Chem. 1988 Mar 5;263(7):3323–3327. [PubMed] [Google Scholar]
- Suzuki H., Kumagai H., Echigo T., Tochikura T. DNA sequence of the Escherichia coli K-12 gamma-glutamyltranspeptidase gene, ggt. J Bacteriol. 1989 Sep;171(9):5169–5172. doi: 10.1128/jb.171.9.5169-5172.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanizawa K., Asano S., Masu Y., Kuramitsu S., Kagamiyama H., Tanaka H., Soda K. The primary structure of thermostable D-amino acid aminotransferase from a thermophilic Bacillus species and its correlation with L-amino acid aminotransferases. J Biol Chem. 1989 Feb 15;264(5):2450–2454. [PubMed] [Google Scholar]
- Xu M. Q., Perler F. B. The mechanism of protein splicing and its modulation by mutation. EMBO J. 1996 Oct 1;15(19):5146–5153. [PMC free article] [PubMed] [Google Scholar]
- Zhou G., Broyles S. S., Dixon J. E., Zalkin H. Avian glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing and activity are dependent upon essential cysteine residues. J Biol Chem. 1992 Apr 15;267(11):7936–7942. [PubMed] [Google Scholar]
- Zwickl P., Grziwa A., Pühler G., Dahlmann B., Lottspeich F., Baumeister W. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry. 1992 Feb 4;31(4):964–972. doi: 10.1021/bi00119a004. [DOI] [PubMed] [Google Scholar]