Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 1;341(Pt 1):157–163.

Chloroplast thioredoxin mutants without active-site cysteines facilitate the reduction of the regulatory disulphide bridge on the gamma-subunit of chloroplast ATP synthase.

M T Stumpp 1, K Motohashi 1, T Hisabori 1
PMCID: PMC1220342  PMID: 10377257

Abstract

The activity of the chloroplast H+-ATPase (CFoCF1) is regulated by the proton electrochemical membrane potential and the reduction or the formation of the disulphide bridge on the gamma-subunit mediated by chloroplast thioredoxins (Trx). The latter regulation also applies to the water-soluble portion of CFoCF1 (CF1) and includes two successive steps, namely the binding of Trx to CF1 and the subsequent reduction or oxidation of CF1. To study this process thoroughly, a new expression system for spinach Trx-f and Trx-m was designed. In the presence of dithiothreitol (DTT) both forms of the expressed Trx could reduce the disulphide bridge on the gamma-subunit of CF1 and thus activate the ATPase. Trx mutants deficient in the internal, or both, cysteines of the active site were designed to study the details of the interaction. The Trx mutant proteins could still activate CF1-ATPase in the presence of DTT and they also increased the apparent affinity of CF1 for DTT. This implies that the binding of Trx to the CF1 gamma-subunit induces a conformational change facilitating the reduction of the disulphide bridge, and partially explains the high efficiency of Trx as a reductant in vivo.

Full Text

The Full Text of this article is available as a PDF (186.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar F., Brunner B., Gardet-Salvi L., Stutz E., Schürmann P. Biosynthesis of active spinach-chloroplast thioredoxin f in transformed E. coli. Plant Mol Biol. 1992 Oct;20(2):301–306. doi: 10.1007/BF00014497. [DOI] [PubMed] [Google Scholar]
  2. Andreo C. S., Patrie W. J., McCarty R. E. Effect of ATPase activation and the delta subunit of coupling factor 1 on reconstitution of photophosphorylation. J Biol Chem. 1982 Sep 10;257(17):9968–9975. [PubMed] [Google Scholar]
  3. Boyer P. D. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brandes H. K., Larimer F. W., Geck M. K., Stringer C. D., Schürmann P., Hartman F. C. Direct identification of the primary nucleophile of thioredoxin f. J Biol Chem. 1993 Sep 5;268(25):18411–18414. [PubMed] [Google Scholar]
  6. Crawford N. A., Droux M., Kosower N. S., Buchanan B. B. Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts. Arch Biochem Biophys. 1989 May 15;271(1):223–239. doi: 10.1016/0003-9861(89)90273-7. [DOI] [PubMed] [Google Scholar]
  7. Dann M. S., McCarty R. E. Characterization of the Activation of Membrane-Bound and Soluble CF(1) by Thioredoxin. Plant Physiol. 1992 May;99(1):153–160. doi: 10.1104/pp.99.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eklund H., Cambillau C., Sjöberg B. M., Holmgren A., Jörnvall H., Hög J. O., Brändén C. I. Conformational and functional similarities between glutaredoxin and thioredoxins. EMBO J. 1984 Jul;3(7):1443–1449. doi: 10.1002/j.1460-2075.1984.tb01994.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galmiche J. M., Girault G., Berger G., Jacquot J. P., Miginiac-Maslow M., Wollman E. Induction by different thioredoxins of ATPase activity in coupling factor 1 from spinach chloroplasts. Biochimie. 1990 Jan;72(1):25–32. doi: 10.1016/0300-9084(90)90169-h. [DOI] [PubMed] [Google Scholar]
  10. Geck M. K., Larimer F. W., Hartman F. C. Identification of residues of spinach thioredoxin f that influence interactions with target enzymes. J Biol Chem. 1996 Oct 4;271(40):24736–24740. doi: 10.1074/jbc.271.40.24736. [DOI] [PubMed] [Google Scholar]
  11. Hisabori T., Kothen G., Strotmann H. Effect of covalent binding of a derivative of 2',3'-O-(2,4,6-trinitrophenyl)-ADP to the tight binding site of CF1 on the enzyme activity. J Biochem. 1993 Sep;114(3):324–328. doi: 10.1093/oxfordjournals.jbchem.a124175. [DOI] [PubMed] [Google Scholar]
  12. Hisabori T., Motohashi K., Kroth P., Strotmann H., Amano T. The formation or the reduction of a disulfide bridge on the gamma subunit of chloroplast ATP synthase affects the inhibitory effect of the epsilon subunit. J Biol Chem. 1998 Jun 26;273(26):15901–15905. doi: 10.1074/jbc.273.26.15901. [DOI] [PubMed] [Google Scholar]
  13. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  14. Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995 Mar 15;3(3):239–243. doi: 10.1016/s0969-2126(01)00153-8. [DOI] [PubMed] [Google Scholar]
  15. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi: 10.1146/annurev.bi.54.070185.001321. [DOI] [PubMed] [Google Scholar]
  16. Häberlein I., Würfel M., Follmann H. Non-redox protein interactions in the thioredoxin activation of chloroplast enzymes. Biochim Biophys Acta. 1992 Jun 24;1121(3):293–296. doi: 10.1016/0167-4838(92)90159-b. [DOI] [PubMed] [Google Scholar]
  17. Kamo M., Tsugita A., Wiessner C., Wedel N., Bartling D., Herrmann R. G., Aguilar F., Gardet-Salvi L., Schürmann P. Primary structure of spinach-chloroplast thioredoxin f. Protein sequencing and analysis of complete cDNA clones for spinach-chloroplast thioredoxin f. Eur J Biochem. 1989 Jun 15;182(2):315–322. doi: 10.1111/j.1432-1033.1989.tb14832.x. [DOI] [PubMed] [Google Scholar]
  18. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  19. Kunkel T. A., Bebenek K., McClary J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 1991;204:125–139. doi: 10.1016/0076-6879(91)04008-c. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Miki J., Maeda M., Mukohata Y., Futai M. The gamma-subunit of ATP synthase from spinach chloroplasts. Primary structure deduced from the cloned cDNA sequence. FEBS Lett. 1988 May 9;232(1):221–226. doi: 10.1016/0014-5793(88)80421-6. [DOI] [PubMed] [Google Scholar]
  22. Mittard V., Morelle N., Brutscher B., Simorre J. P., Marion D., Stein M., Jacquot J. P., Lirsac P. N., Lancelin J. M. 1H, 13C, 15N-NMR resonance assignments of oxidized thioredoxin h from the eukaryotic green alga Chlamydomonas reinhardtii using new methods based on two-dimensional triple-resonance NMR spectroscopy and computer-assisted backbone assignment. Eur J Biochem. 1995 Apr 15;229(2):473–485. doi: 10.1111/j.1432-1033.1995.tb20488.x. [DOI] [PubMed] [Google Scholar]
  23. Mora-García S., Rodríguez-Suárez R., Wolosiuk R. A. Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1, 6-bisphosphatase by mutant Escherichia coli thioredoxins. J Biol Chem. 1998 Jun 26;273(26):16273–16280. doi: 10.1074/jbc.273.26.16273. [DOI] [PubMed] [Google Scholar]
  24. Mouaheb N., Thomas D., Verdoucq L., Monfort P., Meyer Y. In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3312–3317. doi: 10.1073/pnas.95.6.3312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nalin C. M., McCarty R. E. Role of a disulfide bond in the gamma subunit in activation of the ATPase of chloroplast coupling factor 1. J Biol Chem. 1984 Jun 10;259(11):7275–7280. [PubMed] [Google Scholar]
  26. Qin J., Clore G. M., Gronenborn A. M. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Structure. 1994 Jun 15;2(6):503–522. doi: 10.1016/s0969-2126(00)00051-4. [DOI] [PubMed] [Google Scholar]
  27. Rivera-Madrid R., Mestres D., Marinho P., Jacquot J. P., Decottignies P., Miginiac-Maslow M., Meyer Y. Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5620–5624. doi: 10.1073/pnas.92.12.5620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ross S. A., Zhang M. X., Selman B. R. A role for the disulfide bond spacer region of the Chlamydomonas reinhardtii coupling factor 1 gamma-subunit in redox regulation of ATP synthase. J Bioenerg Biomembr. 1996 Feb;28(1):49–57. [PubMed] [Google Scholar]
  29. Ross S. A., Zhang M. X., Selman B. R. Role of the Chlamydomonas reinhardtii coupling factor 1 gamma-subunit cysteine bridge in the regulation of ATP synthase. J Biol Chem. 1995 Apr 28;270(17):9813–9818. doi: 10.1074/jbc.270.17.9813. [DOI] [PubMed] [Google Scholar]
  30. Schumann J., Richter M. L., McCarty R. E. Partial proteolysis as a probe of the conformation of the gamma subunit in activated soluble and membrane-bound chloroplast coupling factor 1. J Biol Chem. 1985 Sep 25;260(21):11817–11823. [PubMed] [Google Scholar]
  31. Schwarz O., Schürmann P., Strotmann H. Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase. J Biol Chem. 1997 Jul 4;272(27):16924–16927. doi: 10.1074/jbc.272.27.16924. [DOI] [PubMed] [Google Scholar]
  32. Wedel N., Clausmeyer S., Herrmann R. G., Gardet-Salvi L., Schürmann P. Nucleotide sequence of cDNAs encoding the entire precursor polypeptide for thioredoxin m from spinach chloroplasts. Plant Mol Biol. 1992 Feb;18(3):527–533. doi: 10.1007/BF00040668. [DOI] [PubMed] [Google Scholar]
  33. Werner-Grüne S., Gunkel D., Schumann J., Strotmann H. Insertion of a "chloroplast-like" regulatory segment responsible for thiol modulation into gamma-subunit of F0F1-ATPase of the cyanobacterium Synechocystis 6803 by mutagenesis of atpC. Mol Gen Genet. 1994 Jul 25;244(2):144–150. doi: 10.1007/BF00283515. [DOI] [PubMed] [Google Scholar]
  34. Wynn R., Cocco M. J., Richards F. M. Mixed disulfide intermediates during the reduction of disulfides by Escherichia coli thioredoxin. Biochemistry. 1995 Sep 19;34(37):11807–11813. doi: 10.1021/bi00037a019. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES