Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 1;341(Pt 1):185–192.

ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer I.

D H Jones 1, B Bax 1, A Fensome 1, S Cockcroft 1
PMCID: PMC1220346  PMID: 10377261

Abstract

The small GTP-binding protein, ADP-ribosylation factor 1 (ARF1) is essential for the formation of coatomer-coated vesicles from the Golgi and is also an activator of phospholipase D (PLD). Moreover, ARF1-regulated PLD is part of the signal-transduction pathway that can lead to secretion. In this study, substitution and deletion mutants of ARF1 were tested for their ability to activate PLD. These map the PLD effector region of ARF1 to the alpha2 helix, part of the beta2-strand and the N-terminal helix and its ensuing loop. ARF mutants with an increased or decreased ability to activate PLD showed similar characteristics when tested for their ability to stimulate secretion from HL60 cells. ARF1, deleted of the N-terminal 17 amino acid residues (Ndel17), did not support PLD activity or secretion, and neither did it inhibit the activity of wild-type myristoylated ARF1 (myrARF1). In contrast, Ndel17 effectively competed with wild-type myrARF1 to prevent coatomer binding to membranes. This appears to define a structural role for Ndel17, as it can bind a high-molecular mass complex in cytosol. In addition, ethanol has no effect on recruitment of coatomer to membrane. We conclude that the function of ARF-regulated PLD is in the signal-transduction pathway leading to secretion of lysosomal granules, and not as an essential component of ARF1-mediated coatomer binding.

Full Text

The Full Text of this article is available as a PDF (242.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amor J. C., Harrison D. H., Kahn R. A., Ringe D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature. 1994 Dec 15;372(6507):704–708. doi: 10.1038/372704a0. [DOI] [PubMed] [Google Scholar]
  2. Antonny B., Beraud-Dufour S., Chardin P., Chabre M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry. 1997 Apr 15;36(15):4675–4684. doi: 10.1021/bi962252b. [DOI] [PubMed] [Google Scholar]
  3. Barr F. A., Huttner W. B. A role for ADP-ribosylation factor 1, but not COP I, in secretory vesicle biogenesis from the trans-Golgi network. FEBS Lett. 1996 Apr 8;384(1):65–70. doi: 10.1016/0014-5793(96)00285-2. [DOI] [PubMed] [Google Scholar]
  4. Bi K., Roth M. G., Ktistakis N. T. Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr Biol. 1997 May 1;7(5):301–307. doi: 10.1016/s0960-9822(06)00153-9. [DOI] [PubMed] [Google Scholar]
  5. Boman A. L., Kahn R. A. Arf proteins: the membrane traffic police? Trends Biochem Sci. 1995 Apr;20(4):147–150. doi: 10.1016/s0968-0004(00)88991-4. [DOI] [PubMed] [Google Scholar]
  6. Brown H. A., Gutowski S., Moomaw C. R., Slaughter C., Sternweis P. C. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell. 1993 Dec 17;75(6):1137–1144. doi: 10.1016/0092-8674(93)90323-i. [DOI] [PubMed] [Google Scholar]
  7. Chen Y. G., Siddhanta A., Austin C. D., Hammond S. M., Sung T. C., Frohman M. A., Morris A. J., Shields D. Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. J Cell Biol. 1997 Aug 11;138(3):495–504. doi: 10.1083/jcb.138.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cockcroft S. Phospholipase D: regulation by GTPases and protein kinase C and physiological relevance. Prog Lipid Res. 1996 Dec;35(4):345–370. doi: 10.1016/s0163-7827(96)00009-4. [DOI] [PubMed] [Google Scholar]
  9. Cockcroft S., Thomas G. M., Fensome A., Geny B., Cunningham E., Gout I., Hiles I., Totty N. F., Truong O., Hsuan J. J. Phospholipase D: a downstream effector of ARF in granulocytes. Science. 1994 Jan 28;263(5146):523–526. doi: 10.1126/science.8290961. [DOI] [PubMed] [Google Scholar]
  10. Duronio R. J., Jackson-Machelski E., Heuckeroth R. O., Olins P. O., Devine C. S., Yonemoto W., Slice L. W., Taylor S. S., Gordon J. I. Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1506–1510. doi: 10.1073/pnas.87.4.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fensome A., Cunningham E., Prosser S., Tan S. K., Swigart P., Thomas G., Hsuan J., Cockcroft S. ARF and PITP restore GTP gamma S-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis. Curr Biol. 1996 Jun 1;6(6):730–738. doi: 10.1016/s0960-9822(09)00454-0. [DOI] [PubMed] [Google Scholar]
  12. Fensome A., Whatmore J., Morgan C., Jones D., Cockcroft S. ADP-ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. J Biol Chem. 1998 May 22;273(21):13157–13164. doi: 10.1074/jbc.273.21.13157. [DOI] [PubMed] [Google Scholar]
  13. Franco M., Chardin P., Chabre M., Paris S. Myristoylation is not required for GTP-dependent binding of ADP-ribosylation factor ARF1 to phospholipids. J Biol Chem. 1993 Nov 25;268(33):24531–24534. [PubMed] [Google Scholar]
  14. Goldberg J. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell. 1999 Mar 19;96(6):893–902. doi: 10.1016/s0092-8674(00)80598-x. [DOI] [PubMed] [Google Scholar]
  15. Goldberg J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell. 1998 Oct 16;95(2):237–248. doi: 10.1016/s0092-8674(00)81754-7. [DOI] [PubMed] [Google Scholar]
  16. Greasley S. E., Jhoti H., Teahan C., Solari R., Fensome A., Thomas G. M., Cockcroft S., Bax B. The structure of rat ADP-ribosylation factor-1 (ARF-1) complexed to GDP determined from two different crystal forms. Nat Struct Biol. 1995 Sep;2(9):797–806. doi: 10.1038/nsb0995-797. [DOI] [PubMed] [Google Scholar]
  17. Hammond S. M., Altshuller Y. M., Sung T. C., Rudge S. A., Rose K., Engebrecht J., Morris A. J., Frohman M. A. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995 Dec 15;270(50):29640–29643. doi: 10.1074/jbc.270.50.29640. [DOI] [PubMed] [Google Scholar]
  18. Kahn R. A. Quantitation and purification of ADP-ribosylation factor. Methods Enzymol. 1991;195:233–242. doi: 10.1016/0076-6879(91)95169-k. [DOI] [PubMed] [Google Scholar]
  19. Ktistakis N. T., Brown H. A., Sternweis P. C., Roth M. G. Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4952–4956. doi: 10.1073/pnas.92.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ktistakis N. T., Brown H. A., Waters M. G., Sternweis P. C., Roth M. G. Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J Cell Biol. 1996 Jul;134(2):295–306. doi: 10.1083/jcb.134.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lopez I., Arnold R. S., Lambeth J. D. Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. J Biol Chem. 1998 May 22;273(21):12846–12852. doi: 10.1074/jbc.273.21.12846. [DOI] [PubMed] [Google Scholar]
  22. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  23. Norman J. C., Jones D., Barry S. T., Holt M. R., Cockcroft S., Critchley D. R. ARF1 mediates paxillin recruitment to focal adhesions and potentiates Rho-stimulated stress fiber formation in intact and permeabilized Swiss 3T3 fibroblasts. J Cell Biol. 1998 Dec 28;143(7):1981–1995. doi: 10.1083/jcb.143.7.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Orcl L., Palmer D. J., Amherdt M., Rothman J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature. 1993 Aug 19;364(6439):732–734. doi: 10.1038/364732a0. [DOI] [PubMed] [Google Scholar]
  25. Randazzo P. A., Terui T., Sturch S., Kahn R. A. The amino terminus of ADP-ribosylation factor (ARF) 1 is essential for interaction with Gs and ARF GTPase-activating protein. J Biol Chem. 1994 Nov 25;269(47):29490–29494. [PubMed] [Google Scholar]
  26. Randazzo P. A., Weiss O., Kahn R. A. Preparation of recombinant ADP-ribosylation factor. Methods Enzymol. 1992;219:362–369. doi: 10.1016/0076-6879(92)19036-6. [DOI] [PubMed] [Google Scholar]
  27. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  28. Rudge S. A., Cavenagh M. M., Kamath R., Sciorra V. A., Morris A. J., Kahn R. A., Engebrecht J. ADP-Ribosylation factors do not activate yeast phospholipase Ds but are required for sporulation. Mol Biol Cell. 1998 Aug;9(8):2025–2036. doi: 10.1091/mbc.9.8.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stamnes M. A., Rothman J. E. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell. 1993 Jun 4;73(5):999–1005. doi: 10.1016/0092-8674(93)90277-w. [DOI] [PubMed] [Google Scholar]
  30. Stamnes M., Schiavo G., Stenbeck G., Söllner T. H., Rothman J. E. ADP-ribosylation factor and phosphatidic acid levels in Golgi membranes during budding of coatomer-coated vesicles. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13676–13680. doi: 10.1073/pnas.95.23.13676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stutchfield J., Cockcroft S. Correlation between secretion and phospholipase D activation in differentiated HL60 cells. Biochem J. 1993 Aug 1;293(Pt 3):649–655. doi: 10.1042/bj2930649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stutchfield J., Cockcroft S. Guanine nucleotides stimulate polyphosphoinositide phosphodiesterase and exocytotic secretion from HL60 cells permeabilized with streptolysin O. Biochem J. 1988 Mar 1;250(2):375–382. doi: 10.1042/bj2500375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sung T. C., Altshuller Y. M., Morris A. J., Frohman M. A. Molecular analysis of mammalian phospholipase D2. J Biol Chem. 1999 Jan 1;274(1):494–502. doi: 10.1074/jbc.274.1.494. [DOI] [PubMed] [Google Scholar]
  34. Tanigawa G., Orci L., Amherdt M., Ravazzola M., Helms J. B., Rothman J. E. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol. 1993 Dec;123(6 Pt 1):1365–1371. doi: 10.1083/jcb.123.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vinggaard A. M., Jensen T., Morgan C. P., Cockcroft S., Hansen H. S. Didecanoyl phosphatidylcholine is a superior substrate for assaying mammalian phospholipase D. Biochem J. 1996 Nov 1;319(Pt 3):861–864. doi: 10.1042/bj3190861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. West M. A., Bright N. A., Robinson M. S. The role of ADP-ribosylation factor and phospholipase D in adaptor recruitment. J Cell Biol. 1997 Sep 22;138(6):1239–1254. doi: 10.1083/jcb.138.6.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Whatmore J., Morgan C. P., Cunningham E., Collison K. S., Willison K. R., Cockcroft S. ADP-ribosylation factor 1-regulated phospholipase D activity is localized at the plasma membrane and intracellular organelles in HL60 cells. Biochem J. 1996 Dec 15;320(Pt 3):785–794. doi: 10.1042/bj3200785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhao L., Helms J. B., Brügger B., Harter C., Martoglio B., Graf R., Brunner J., Wieland F. T. Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4418–4423. doi: 10.1073/pnas.94.9.4418. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES