Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 15;341(Pt 2):265–269.

Osteocalcin binds tightly to the gamma-glutamylcarboxylase at a site distinct from that of the other known vitamin K-dependent proteins.

R J Houben 1, D Jin 1, D W Stafford 1, P Proost 1, R H Ebberink 1, C Vermeer 1, B A Soute 1
PMCID: PMC1220355  PMID: 10393081

Abstract

Vitamin K-dependent proteins contain a propeptide that is required for recognition by the enzyme gamma-glutamylcarboxylase. Substrates used in vitro for carboxylation studies lacking a prosequence are characterized by Km values in the millimolar range, whereas the Km for peptides containing a prosequence is three or four orders of magnitude smaller. Here we report that descarboxy-osteocalcin is an exception in this respect. With descarboxy-osteocalcin in purified propeptide-free recombinant carboxylase, the Km was 1.8 microM. Furthermore, osteocalcin was an inhibitor of descarboxy-osteocalcin carboxylation with a Ki of 76 microM. In contrast with the other vitamin K-dependent proteins, free propeptides do not inhibit descarboxy-osteocalcin carboxylation. Moreover, propeptide-containing substrates were inhibited neither by osteocalcin nor by its propeptide. From our studies we conclude that descarboxy-osteocalcin must have an internal recognition sequence that binds to gamma-glutamylcarboxylase at a site different from the propeptide-recognition site.

Full Text

The Full Text of this article is available as a PDF (135.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benton M. E., Price P. A., Suttie J. W. Multi-site-specificity of the vitamin K-dependent carboxylase: in vitro carboxylation of des-gamma-carboxylated bone Gla protein and Des-gamma-carboxylated pro bone Gla protein. Biochemistry. 1995 Jul 25;34(29):9541–9551. doi: 10.1021/bi00029a031. [DOI] [PubMed] [Google Scholar]
  2. Cheung A., Engelke J. A., Sanders C., Suttie J. W. Vitamin K-dependent carboxylase: influence of the "propeptide" region on enzyme activity. Arch Biochem Biophys. 1989 Nov 1;274(2):574–581. doi: 10.1016/0003-9861(89)90472-4. [DOI] [PubMed] [Google Scholar]
  3. Chun R., Glabe C. G., Fan H. Chemical synthesis of biologically active tat trans-activating protein of human immunodeficiency virus type 1. J Virol. 1990 Jun;64(6):3074–3077. doi: 10.1128/jvi.64.6.3074-3077.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Engelke J. A., Hale J. E., Suttie J. W., Price P. A. Vitamin K-dependent carboxylase: utilization of decarboxylated bone Gla protein and matrix Gla protein as substrates. Biochim Biophys Acta. 1991 May 30;1078(1):31–34. doi: 10.1016/0167-4838(91)90088-h. [DOI] [PubMed] [Google Scholar]
  5. Fraser J. D., Price P. A. Lung, heart, and kidney express high levels of mRNA for the vitamin K-dependent matrix Gla protein. Implications for the possible functions of matrix Gla protein and for the tissue distribution of the gamma-carboxylase. J Biol Chem. 1988 Aug 15;263(23):11033–11036. [PubMed] [Google Scholar]
  6. Furie B. C., Furie B. Structure and mechanism of action of the vitamin K-dependent gamma-glutamyl carboxylase: recent advances from mutagenesis studies. Thromb Haemost. 1997 Jul;78(1):595–598. [PubMed] [Google Scholar]
  7. Furie B., Bouchard B. A., Furie B. C. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood. 1999 Mar 15;93(6):1798–1808. [PubMed] [Google Scholar]
  8. Hauschka P. V., Haroon Y., Buchthal S. D., Bell R. G. Vitamin K-dependent processes in tumor cells. Haemostasis. 1986;16(3-4):273–287. doi: 10.1159/000215299. [DOI] [PubMed] [Google Scholar]
  9. Hauschka P. V., Lian J. B., Cole D. E., Gundberg C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989 Jul;69(3):990–1047. doi: 10.1152/physrev.1989.69.3.990. [DOI] [PubMed] [Google Scholar]
  10. Jorgensen M. J., Cantor A. B., Furie B. C., Brown C. L., Shoemaker C. B., Furie B. Recognition site directing vitamin K-dependent gamma-carboxylation resides on the propeptide of factor IX. Cell. 1987 Jan 30;48(2):185–191. doi: 10.1016/0092-8674(87)90422-3. [DOI] [PubMed] [Google Scholar]
  11. Knobloch J. E., Suttie J. W. Vitamin K-dependent carboxylase. Control of enzyme activity by the "propeptide" region of factor X. J Biol Chem. 1987 Nov 15;262(32):15334–15337. [PubMed] [Google Scholar]
  12. Luo G., Ducy P., McKee M. D., Pinero G. J., Loyer E., Behringer R. R., Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997 Mar 6;386(6620):78–81. doi: 10.1038/386078a0. [DOI] [PubMed] [Google Scholar]
  13. Nakano T., Kawamoto K., Kishino J., Nomura K., Higashino K., Arita H. Requirement of gamma-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem J. 1997 Apr 15;323(Pt 2):387–392. doi: 10.1042/bj3230387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ogunjobi O., Ramage R. Ubiquitin: preparative chemical synthesis, purification and characterization. Biochem Soc Trans. 1990 Dec;18(6):1322–1323. doi: 10.1042/bst0181322. [DOI] [PubMed] [Google Scholar]
  15. Price P. A. Role of vitamin-K-dependent proteins in bone metabolism. Annu Rev Nutr. 1988;8:565–583. doi: 10.1146/annurev.nu.08.070188.003025. [DOI] [PubMed] [Google Scholar]
  16. Price P. A., Williamson M. K. Primary structure of bovine matrix Gla protein, a new vitamin K-dependent bone protein. J Biol Chem. 1985 Dec 5;260(28):14971–14975. [PubMed] [Google Scholar]
  17. Soute B. A., Ulrich M. M., Watson A. D., Maddison J. E., Ebberink R. H., Vermeer C. Congenital deficiency of all vitamin K-dependent blood coagulation factors due to a defective vitamin K-dependent carboxylase in Devon Rex cats. Thromb Haemost. 1992 Nov 10;68(5):521–525. [PubMed] [Google Scholar]
  18. Stearns D. J., Kurosawa S., Sims P. J., Esmon N. L., Esmon C. T. The interaction of a Ca2+-dependent monoclonal antibody with the protein C activation peptide region. Evidence for obligatory Ca2+ binding to both antigen and antibody. J Biol Chem. 1988 Jan 15;263(2):826–832. [PubMed] [Google Scholar]
  19. Suttie J. W., Jackson C. M. Prothrombin structure, activation, and biosynthesis. Physiol Rev. 1977 Jan;57(1):1–70. doi: 10.1152/physrev.1977.57.1.1. [DOI] [PubMed] [Google Scholar]
  20. Suttie J. W., Lehrman S. R., Geweke L. O., Hageman J. M., Rich D. H. Vitamin K-dependent carboxylase: requirements for carboxylation of soluble peptide and substrate specificity. Biochem Biophys Res Commun. 1979 Feb 14;86(3):500–507. doi: 10.1016/0006-291x(79)91742-x. [DOI] [PubMed] [Google Scholar]
  21. Ulrich M. M., Furie B., Jacobs M. R., Vermeer C., Furie B. C. Vitamin K-dependent carboxylation. A synthetic peptide based upon the gamma-carboxylation recognition site sequence of the prothrombin propeptide is an active substrate for the carboxylase in vitro. J Biol Chem. 1988 Jul 15;263(20):9697–9702. [PubMed] [Google Scholar]
  22. Ulrich M. M., Soute B. A., de Boer-van den Berg M. A., Vermeer C. Isoenzymes of vitamin-K-dependent carboxylase. Biochim Biophys Acta. 1985 Jul 18;830(1):105–108. doi: 10.1016/0167-4838(85)90138-4. [DOI] [PubMed] [Google Scholar]
  23. Van Haarlem L. J., Ulrich M. M., Hemker H. C., Soute B. A., Vermeer C. Isolation and partial characterization of a vitamin K-dependent carboxylase from bovine aortae. Biochem J. 1987 Jul 1;245(1):251–255. doi: 10.1042/bj2450251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vermeer C. Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem J. 1990 Mar 15;266(3):625–636. doi: 10.1042/bj2660625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolf G. Function of the bone protein osteocalcin: definitive evidence. Nutr Rev. 1996 Oct;54(10):332–333. doi: 10.1111/j.1753-4887.1996.tb03798.x. [DOI] [PubMed] [Google Scholar]
  26. Wu S. M., Morris D. P., Stafford D. W. Identification and purification to near homogeneity of the vitamin K-dependent carboxylase. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2236–2240. doi: 10.1073/pnas.88.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wu S. M., Mutucumarana V. P., Stafford D. W. Purification of gamma-glutamyl carboxylase from bovine liver. Methods Enzymol. 1997;282:346–357. doi: 10.1016/s0076-6879(97)82119-2. [DOI] [PubMed] [Google Scholar]
  28. Wu S. M., Soute B. A., Vermeer C., Stafford D. W. In vitro gamma-carboxylation of a 59-residue recombinant peptide including the propeptide and the gamma-carboxyglutamic acid domain of coagulation factor IX. Effect of mutations near the propeptide cleavage site. J Biol Chem. 1990 Aug 5;265(22):13124–13129. [PubMed] [Google Scholar]
  29. Young M. F., Kerr J. M., Ibaraki K., Heegaard A. M., Robey P. G. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop Relat Res. 1992 Aug;(281):275–294. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES