Abstract
The recombinant fructosyltransferase (Ftf) of Streptococcus salivarius was expressed in Escherichia coli and purified to electrophoretic homogeneity after a combination of adsorption, ion-exchange and gel-filtration chromatography. The N-terminal signal sequence of the Ftf was removed by E. coli at the same site as in its natural host. The purified Ftf exhibited maximum activity at pH 6.0 and 37 degrees C, was activated by Ca2+, but inhibited by the metal ions Cu2+, Zn2+, Hg2+ and Fe3+. The enzyme catalysed the transfer of the fructosyl moiety of sucrose to a number of acceptors, including water, glucose and sucrose via a Ping Pong mechanism involving a fructosyl-enzyme intermediate. While this mechanism of catalysis is utilized by the levansucrases of Bacillus subtilis and Acetobacter diazotrophicus and the values of the kinetic constants for the three enzymes are similar, sucrose was a far more efficient fructosyl-acceptor for the Ftf of S. salivarius than for the two other enzymes.
Full Text
The Full Text of this article is available as a PDF (175.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbe K., Takahashi-Abbe S., Schoen R. A., Wittenberger C. L. Role of NADH oxidase in the oxidative inactivation of Streptococcus salivarius fructosyltransferase. Infect Immun. 1986 Oct;54(1):233–238. doi: 10.1128/iai.54.1.233-238.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avineri-Shapiro S., Hestrin S. The mechanism of polysaccharide production from sucrose. 2. Biochem J. 1945;39(2):167–172. doi: 10.1042/bj0390167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambert R., Benyahia F., Petit-Glatron M. F. Secretion of Bacillus subtilis levansucrase. Fe(III) could act as a cofactor in an efficient coupling of the folding and translocation processes. Biochem J. 1990 Jan 15;265(2):375–382. doi: 10.1042/bj2650375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambert R., Gonzy-Treboul G. Levansucrase of Bacillus subtilis. Characterization of a stabilized fructosyl-enzyme complex and identification of an aspartly residue as the binding site of the fructosyl group. Eur J Biochem. 1976 Dec 11;71(2):493–508. doi: 10.1111/j.1432-1033.1976.tb11138.x. [DOI] [PubMed] [Google Scholar]
- Chambert R., Gonzy-Tréboul G. Levansucrase of Bacillus subtilis: kinetic and thermodynamic aspects of transfructosylation processes. Eur J Biochem. 1976 Feb 2;62(1):55–64. doi: 10.1111/j.1432-1033.1976.tb10097.x. [DOI] [PubMed] [Google Scholar]
- Chambert R., Petit-Glatron M. F. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J. 1991 Oct 1;279(Pt 1):35–41. doi: 10.1042/bj2790035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambert R., Treboul G., Dedonder R. Kinetic studies of levansucrase of Bacillus subtilis. Eur J Biochem. 1974 Jan 16;41(2):285–300. doi: 10.1111/j.1432-1033.1974.tb03269.x. [DOI] [PubMed] [Google Scholar]
- Chao J., Johnson G. F., Graves D. J. Kinetic mechanism of maltodextrin phosphorylase. Biochemistry. 1969 Apr;8(4):1459–1466. doi: 10.1021/bi00832a022. [DOI] [PubMed] [Google Scholar]
- Chen J., Baithun S. I., Pollock D. J., Berry C. L. Argyrophilic and hormone immunoreactive cells in normal and hyperplastic pancreatic ducts and exocrine pancreatic carcinoma. Virchows Arch A Pathol Anat Histopathol. 1988;413(5):399–405. doi: 10.1007/BF00716988. [DOI] [PubMed] [Google Scholar]
- Ebisu S., Kato K., Kotani S., Misaki A. Structural differences in fructans elaborated by streptococcus mutans and Strep. salivarius. J Biochem. 1975 Nov;78(5):879–887. doi: 10.1093/oxfordjournals.jbchem.a130993. [DOI] [PubMed] [Google Scholar]
- Fouet A., Arnaud M., Klier A., Rapoport G. Characterization of the precursor form of the exocellular levansucrase from Bacillus subtilis. Biochem Biophys Res Commun. 1984 Mar 15;119(2):795–800. doi: 10.1016/s0006-291x(84)80320-4. [DOI] [PubMed] [Google Scholar]
- Hamilton I. R. Synthesis and degradiation of intracellular polyglucose in Streptococcus salivarius. Can J Microbiol. 1968 Jan;14(1):65–77. doi: 10.1139/m68-011. [DOI] [PubMed] [Google Scholar]
- Hernandez L., Arrieta J., Menendez C., Vazquez R., Coego A., Suarez V., Selman G., Petit-Glatron M. F., Chambert R. Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J. 1995 Jul 1;309(Pt 1):113–118. doi: 10.1042/bj3090113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hettwer U., Gross M., Rudolph K. Purification and characterization of an extracellular levansucrase from Pseudomonas syringae pv. phaseolicola. J Bacteriol. 1995 May;177(10):2834–2839. doi: 10.1128/jb.177.10.2834-2839.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacques N. A. Calcium dependence of the cell-associated fructosyltransferase of Streptococcus salivarius. Carbohydr Res. 1984 Apr 15;127(2):349–355. doi: 10.1016/0008-6215(84)85370-7. [DOI] [PubMed] [Google Scholar]
- Jacques N. A. Inhibition of the expression of cell-associated fructosyltransferase in Streptococcus salivarius by octyl beta-D-glucopyranoside. J Gen Microbiol. 1985 Dec;131(12):3243–3250. doi: 10.1099/00221287-131-12-3243. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li Y., Triccas J. A., Ferenci T. A novel levansucrase-levanase gene cluster in Bacillus stearothermophilus ATCC12980. Biochim Biophys Acta. 1997 Sep 12;1353(3):203–208. doi: 10.1016/s0167-4781(97)00103-6. [DOI] [PubMed] [Google Scholar]
- Manly R. S., Richardson D. T. Metabolism of levan by oral samples. J Dent Res. 1968 Nov-Dec;47(6):1080–1086. doi: 10.1177/00220345680470061301. [DOI] [PubMed] [Google Scholar]
- Marshall K., Weigel H. Evidence of multiple branching in the levan elaborated by Streptococcus salivarius strain 51. Carbohydr Res. 1980 Aug 15;83(2):321–326. doi: 10.1016/s0008-6215(00)84544-9. [DOI] [PubMed] [Google Scholar]
- Milward C. P., Jacques N. A. Secretion of fructosyltransferase by Streptococcus salivarius involves the sucrose-dependent release of the cell-bound form. J Gen Microbiol. 1990 Jan;136(1):165–169. doi: 10.1099/00221287-136-1-165. [DOI] [PubMed] [Google Scholar]
- Munro C., Michalek S. M., Macrina F. L. Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect Immun. 1991 Jul;59(7):2316–2323. doi: 10.1128/iai.59.7.2316-2323.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petit-Glatron M. F., Monteil I., Benyahia F., Chambert R. Bacillus subtilis levansucrase: amino acid substitutions at one site affect secretion efficiency and refolding kinetics mediated by metals. Mol Microbiol. 1990 Dec;4(12):2063–2070. doi: 10.1111/j.1365-2958.1990.tb00566.x. [DOI] [PubMed] [Google Scholar]
- Rathsam C., Giffard P. M., Jacques N. A. The cell-bound fructosyltransferase of Streptococcus salivarius: the carboxyl terminus specifies attachment in a Streptococcus gordonii model system. J Bacteriol. 1993 Jul;175(14):4520–4527. doi: 10.1128/jb.175.14.4520-4527.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rathsam C., Jacques N. A. Role of C-terminal domains in surface attachment of the fructosyltransferase of Streptococcus salivarius ATCC 25975. J Bacteriol. 1998 Dec;180(23):6400–6403. doi: 10.1128/jb.180.23.6400-6403.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiroza T., Kuramitsu H. K. Sequence analysis of the Streptococcus mutans fructosyltransferase gene and flanking regions. J Bacteriol. 1988 Feb;170(2):810–816. doi: 10.1128/jb.170.2.810-816.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song D. D., Jacques N. A. Cell disruption of Escherichia coli by glass bead stirring for the recovery of recombinant proteins. Anal Biochem. 1997 Jun 1;248(2):300–301. doi: 10.1006/abio.1997.2149. [DOI] [PubMed] [Google Scholar]
- Sprenger N., Bortlik K., Brandt A., Boller T., Wiemken A. Purification, cloning, and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11652–11656. doi: 10.1073/pnas.92.25.11652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi N., Mizuno F., Takamori K. Purification and preliminary characterization of exo-beta-D-fructosidase in Streptococcus salivarius KTA-19. Infect Immun. 1985 Jan;47(1):271–276. doi: 10.1128/iai.47.1.271-276.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang L. B., Lenstra R., Borchert T. V., Nagarajan V. Isolation and characterization of levansucrase-encoding gene from Bacillus amyloliquefaciens. Gene. 1990 Nov 30;96(1):89–93. doi: 10.1016/0378-1119(90)90345-r. [DOI] [PubMed] [Google Scholar]
- Vijn I., van Dijken A., Sprenger N., van Dun K., Weisbeek P., Wiemken A., Smeekens S. Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyltransferase. Plant J. 1997 Mar;11(3):387–398. doi: 10.1046/j.1365-313x.1997.11030387.x. [DOI] [PubMed] [Google Scholar]
- Walker G. J., Hare M. D., Morrey-Jones J. G. Activity of fructanase in batch cultures of oral streptococci. Carbohydr Res. 1983 Feb 16;113(1):101–112. doi: 10.1016/0008-6215(83)88222-6. [DOI] [PubMed] [Google Scholar]
- Wood J. M. The amount, distribution and metabolism of soluble polysaccharides in human dental plaque. Arch Oral Biol. 1967 Jul;12(7):849–858. doi: 10.1016/0003-9969(67)90107-0. [DOI] [PubMed] [Google Scholar]