Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 15;341(Pt 2):339–346.

Lipoprotein cholesterol uptake mediates up-regulation of bile-acid synthesis by increasing cholesterol 7alpha-hydroxylase but not sterol 27-hydroxylase gene expression in cultured rat hepatocytes.

S M Post 1, J Twisk 1, L van der Fits 1, E C de Wit 1, M F Hoekman 1, W H Mager 1, H M Princen 1
PMCID: PMC1220365  PMID: 10393091

Abstract

Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7alpha-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different lipoproteins in regulating both enzymes are not well established. We studied the effect of different rabbit lipoproteins on cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase in cultured rat hepatocytes. beta-Migrating very-low-density lipoprotein (betaVLDL) and intermediate-density lipoprotein (IDL) caused a significant increase in the intracellular cholesteryl ester content of cells (2. 3- and 2-fold, respectively) at a concentration of 200 microgram of cholesterol/ml, whereas high-density lipoprotein (HDL, 50% v/v), containing no apolipoprotein E (apo E), showed no effect after a 24-h incubation. betaVLDL and IDL increased bile-acid synthesis (1. 9- and 1.6-fold, respectively) by up-regulation of cholesterol 7alpha-hydroxylase activity (1.7- and 1.5-fold, respectively). Dose- and time-dependent changes in cholesterol 7alpha-hydroxylase mRNA levels and gene expression underlie the increase in enzyme activity. Incubation of cells with HDL showed no effect. Sterol 27-hydroxylase gene expression was not affected by any of the lipoproteins added. Transient-expression experiments in hepatocytes, transfected with a promoter-reporter construct containing the proximal 348 nucleotides of the rat cholesterol 7alpha-hydroxylase promoter, showed an enhanced gene transcription (2-fold) with betaVLDL, indicating that a sequence important for a cholesterol-induced transcriptional response is located in this part of the cholesterol 7alpha-hydroxylase gene. The extent of stimulation of cholesterol 7alpha-hydroxylase is associated with the apo E content of the lipoprotein particle, which is important in the uptake of lipoprotein cholesterol. We conclude that physiological concentrations of cholesterol in apo E-containing lipoproteins increase bile-acid synthesis by stimulating cholesterol 7alpha-hydroxylase gene transcription, whereas HDL has no effect and sterol 27-hydroxylase is not affected.

Full Text

The Full Text of this article is available as a PDF (153.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. E., Kok E., Javitt N. B. Bile acid synthesis in man: metabolism of 7 -hydroxycholesterol- 14 C and 26-hydroxycholesterol- 3 H. J Clin Invest. 1972 Jan;51(1):112–117. doi: 10.1172/JCI106780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelson M., Sjövall J. Potential bile acid precursors in plasma--possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J Steroid Biochem. 1990 Aug 28;36(6):631–640. doi: 10.1016/0022-4731(90)90182-r. [DOI] [PubMed] [Google Scholar]
  3. Björkhem I., Blomstrand R., Lewenhaupt A., Svensson L. Effect of lymphatic drainage on 7alpha-hydroxylation of cholesterol in rat liver. Biochem Biophys Res Commun. 1978 Nov 29;85(2):532–540. doi: 10.1016/0006-291x(78)91196-8. [DOI] [PubMed] [Google Scholar]
  4. Björkhem I., Eggertsen G., Andersson U. On the mechanism of stimulation of cholesterol 7 alpha-hydroxylase by dietary cholesterol. Biochim Biophys Acta. 1991 Oct 1;1085(3):329–335. doi: 10.1016/0005-2760(91)90137-7. [DOI] [PubMed] [Google Scholar]
  5. Chiang J. Y. Reversed-phase high-performance liquid chromatography assay of cholesterol 7 alpha-hydroxylase. Methods Enzymol. 1991;206:483–491. doi: 10.1016/0076-6879(91)06117-l. [DOI] [PubMed] [Google Scholar]
  6. Chiang J. Y., Stroup D. Identification and characterization of a putative bile acid-responsive element in cholesterol 7 alpha-hydroxylase gene promoter. J Biol Chem. 1994 Jul 1;269(26):17502–17507. [PubMed] [Google Scholar]
  7. Cooper A. D., Chen J., Botelho-Yetkinler M. J., Cao Y., Taniguchi T., Levy-Wilson B. Characterization of hepatic-specific regulatory elements in the promoter region of the human cholesterol 7alpha-hydroxylase gene. J Biol Chem. 1997 Feb 7;272(6):3444–3452. [PubMed] [Google Scholar]
  8. Crestani M., Stroup D., Chiang J. Y. Hormonal regulation of the cholesterol 7 alpha-hydroxylase gene (CYP7). J Lipid Res. 1995 Nov;36(11):2419–2432. [PubMed] [Google Scholar]
  9. Danielsson H., Einarsson K., Johansson G. Effect of biliary drainage on individual reactions in the conversion of cholesterol to taurochlic acid. Bile acids and steroids 180. Eur J Biochem. 1967 Jul;2(1):44–49. doi: 10.1111/j.1432-1033.1967.tb00103.x. [DOI] [PubMed] [Google Scholar]
  10. Davis R. A., Hyde P. M., Kuan J. C., Malone-McNeal M., Archambault-Schexnayder J. Bile acid secretion by cultured rat hepatocytes. Regulation by cholesterol availability. J Biol Chem. 1983 Mar 25;258(6):3661–3667. [PubMed] [Google Scholar]
  11. Duane W. C. Effects of lovastatin and dietary cholesterol on bile acid kinetics and bile lipid composition in healthy male subjects. J Lipid Res. 1994 Mar;35(3):501–509. [PubMed] [Google Scholar]
  12. Einarsson K., Reihnér E., Björkhem I. On the saturation of the cholesterol 7 alpha-hydroxylase in human liver microsomes. J Lipid Res. 1989 Oct;30(10):1477–1481. [PubMed] [Google Scholar]
  13. Ford R. P., Botham K. M., Suckling K. E., Boyd G. S. Characterisation of rat hepatocyte monolayers for investigation of the metabolism of bile salts. Biochim Biophys Acta. 1985 Sep 11;836(2):185–191. doi: 10.1016/0005-2760(85)90065-7. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  15. Hasan S. Q., Kushwaha R. S. Differences in 27-hydroxycholesterol concentrations in plasma and liver of baboons with high and low responses to dietary cholesterol and fat. Biochim Biophys Acta. 1993 Oct 20;1182(3):299–302. doi: 10.1016/0925-4439(93)90072-9. [DOI] [PubMed] [Google Scholar]
  16. Havekes L. M., de Wit E. C., Princen H. M. Cellular free cholesterol in Hep G2 cells is only partially available for down-regulation of low-density-lipoprotein receptor activity. Biochem J. 1987 Nov 1;247(3):739–746. doi: 10.1042/bj2470739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoekman M. F., Rientjes J. M., Twisk J., Planta R. J., Princen H. M., Mager W. H. Transcriptional regulation of the gene encoding cholesterol 7 alpha-hydroxylase in the rat. Gene. 1993 Aug 25;130(2):217–223. doi: 10.1016/0378-1119(93)90422-y. [DOI] [PubMed] [Google Scholar]
  18. Jelinek D. F., Andersson S., Slaughter C. A., Russell D. W. Cloning and regulation of cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis. J Biol Chem. 1990 May 15;265(14):8190–8197. [PMC free article] [PubMed] [Google Scholar]
  19. Jones M. P., Pandak W. M., Heuman D. M., Chiang J. Y., Hylemon P. B., Vlahcevic Z. R. Cholesterol 7 alpha-hydroxylase: evidence for transcriptional regulation by cholesterol or metabolic products of cholesterol in the rat. J Lipid Res. 1993 Jun;34(6):885–892. [PubMed] [Google Scholar]
  20. Li Y. C., Wang D. P., Chiang J. Y. Regulation of cholesterol 7 alpha-hydroxylase in the liver. Cloning, sequencing, and regulation of cholesterol 7 alpha-hydroxylase mRNA. J Biol Chem. 1990 Jul 15;265(20):12012–12019. [PubMed] [Google Scholar]
  21. Mackinnon A. M., Drevon C. A., Sand T. M., Davis R. A. Regulation of bile acid synthesis in cultured rat hepatocytes: stimulation by apoE-rich high density lipoproteins. J Lipid Res. 1987 Jul;28(7):847–855. [PubMed] [Google Scholar]
  22. Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  23. Myant N. B., Mitropoulos K. A. Cholesterol 7 alpha-hydroxylase. J Lipid Res. 1977 Mar;18(2):135–153. [PubMed] [Google Scholar]
  24. Pandak W. M., Li Y. C., Chiang J. Y., Studer E. J., Gurley E. C., Heuman D. M., Vlahcevic Z. R., Hylemon P. B. Regulation of cholesterol 7 alpha-hydroxylase mRNA and transcriptional activity by taurocholate and cholesterol in the chronic biliary diverted rat. J Biol Chem. 1991 Feb 25;266(6):3416–3421. [PubMed] [Google Scholar]
  25. Peet D. J., Turley S. D., Ma W., Janowski B. A., Lobaccaro J. M., Hammer R. E., Mangelsdorf D. J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998 May 29;93(5):693–704. doi: 10.1016/s0092-8674(00)81432-4. [DOI] [PubMed] [Google Scholar]
  26. Post S. M., de Wit E. C., Princen H. M. Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase in rat hepatocytes. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3064–3070. doi: 10.1161/01.atv.17.11.3064. [DOI] [PubMed] [Google Scholar]
  27. Princen H. M., Huijsmans C. M., Kuipers F., Vonk R. J., Kempen H. J. Ketoconazole blocks bile acid synthesis in hepatocyte monolayer cultures and in vivo in rat by inhibiting cholesterol 7 alpha-hydroxylase. J Clin Invest. 1986 Oct;78(4):1064–1071. doi: 10.1172/JCI112662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Princen H. M., Meijer P., Wolthers B. G., Vonk R. J., Kuipers F. Cyclosporin A blocks bile acid synthesis in cultured hepatocytes by specific inhibition of chenodeoxycholic acid synthesis. Biochem J. 1991 Apr 15;275(Pt 2):501–505. doi: 10.1042/bj2750501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ramirez M. I., Karaoglu D., Haro D., Barillas C., Bashirzadeh R., Gil G. Cholesterol and bile acids regulate cholesterol 7 alpha-hydroxylase expression at the transcriptional level in culture and in transgenic mice. Mol Cell Biol. 1994 Apr;14(4):2809–2821. doi: 10.1128/mcb.14.4.2809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sampson W. J., Botham K. M., Jackson B., Suckling K. E. The effect of inhibition of cholesterol esterification on the fate of cholesterol derived from HDL in rat hepatocyte monolayers. FEBS Lett. 1988 Jan 25;227(2):179–182. doi: 10.1016/0014-5793(88)80893-7. [DOI] [PubMed] [Google Scholar]
  31. Schwarz M., Lund E. G., Russell D. W. Two 7 alpha-hydroxylase enzymes in bile acid biosynthesis. Curr Opin Lipidol. 1998 Apr;9(2):113–118. doi: 10.1097/00041433-199804000-00006. [DOI] [PubMed] [Google Scholar]
  32. Shefer S., Cheng F. W., Hauser S., Batta A. K., Salen G. Regulation of bile acid synthesis. Measurement of cholesterol 7 alpha-hydroxylase activity in rat liver microsomal preparations in the absence of endogenous cholesterol. J Lipid Res. 1981 Mar;22(3):532–536. [PubMed] [Google Scholar]
  33. Shefer S., Hauser S., Bekersky I., Mosbach E. H. Biochemical site of regulation of bile acid biosynthesis in the rat. J Lipid Res. 1970 Sep;11(5):404–411. [PubMed] [Google Scholar]
  34. Spady D. K., Cuthbert J. A. Regulation of hepatic sterol metabolism in the rat. Parallel regulation of activity and mRNA for 7 alpha-hydroxylase but not 3-hydroxy-3-methylglutaryl-coenzyme A reductase or low density lipoprotein receptor. J Biol Chem. 1992 Mar 15;267(8):5584–5591. [PubMed] [Google Scholar]
  35. Stone B. G., Schreiber D., Alleman L. D., Ho C. Y. Hepatic metabolism and secretion of a cholesterol-enriched lipoprotein fraction. J Lipid Res. 1987 Feb;28(2):162–172. [PubMed] [Google Scholar]
  36. Straka M. S., Junker L. H., Zacarro L., Zogg D. L., Dueland S., Everson G. T., Davis R. A. Substrate stimulation of 7 alpha-hydroxylase, an enzyme located in the cholesterol-poor endoplasmic reticulum. J Biol Chem. 1990 May 5;265(13):7145–7149. [PubMed] [Google Scholar]
  37. Stravitz R. T., Vlahcevic Z. R., Russell T. L., Heizer M. L., Avadhani N. G., Hylemon P. B. Regulation of sterol 27-hydroxylase and an alternative pathway of bile acid biosynthesis in primary cultures of rat hepatocytes. J Steroid Biochem Mol Biol. 1996 Mar;57(5-6):337–347. doi: 10.1016/0960-0760(95)00282-0. [DOI] [PubMed] [Google Scholar]
  38. Swell L., Gustafsson J., Schwartz C. C., Halloran L. G., Danielsson H., Vlahcevic Z. R. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man. J Lipid Res. 1980 May;21(4):455–466. [PubMed] [Google Scholar]
  39. Twisk J., Hoekman M. F., Lehmann E. M., Meijer P., Mager W. H., Princen H. M. Insulin suppresses bile acid synthesis in cultured rat hepatocytes by down-regulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase gene transcription. Hepatology. 1995 Feb;21(2):501–510. [PubMed] [Google Scholar]
  40. Twisk J., Hoekman M. F., Muller L. M., Iida T., Tamaru T., Ijzerman A., Mager W. H., Princen H. M. Structural aspects of bile acids involved in the regulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase. Eur J Biochem. 1995 Mar 15;228(3):596–604. doi: 10.1111/j.1432-1033.1995.0596m.x. [DOI] [PubMed] [Google Scholar]
  41. Twisk J., Lehmann E. M., Princen H. M. Differential feedback regulation of cholesterol 7 alpha-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes. Biochem J. 1993 Mar 15;290(Pt 3):685–691. doi: 10.1042/bj2900685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Twisk J., de Wit E. C., Princen H. M. Suppression of sterol 27-hydroxylase mRNA and transcriptional activity by bile acids in cultured rat hepatocytes. Biochem J. 1995 Jan 15;305(Pt 2):505–511. doi: 10.1042/bj3050505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vlahcevic Z. R., Jairath S. K., Heuman D. M., Stravitz R. T., Hylemon P. B., Avadhani N. G., Pandak W. M. Transcriptional regulation of hepatic sterol 27-hydroxylase by bile acids. Am J Physiol. 1996 Apr;270(4 Pt 1):G646–G652. doi: 10.1152/ajpgi.1996.270.4.G646. [DOI] [PubMed] [Google Scholar]
  44. Vlahcevic Z. R., Pandak W. M., Hylemon P. B., Heuman D. M. Role of newly synthesized cholesterol or its metabolites on the regulation of bile acid biosynthesis after short-term biliary diversion in the rat. Hepatology. 1993 Sep;18(3):660–668. [PubMed] [Google Scholar]
  45. Vlahcevic Z. R., Stravitz R. T., Heuman D. M., Hylemon P. B., Pandak W. M. Quantitative estimations of the contribution of different bile acid pathways to total bile acid synthesis in the rat. Gastroenterology. 1997 Dec;113(6):1949–1957. doi: 10.1016/s0016-5085(97)70015-5. [DOI] [PubMed] [Google Scholar]
  46. Whiting M. J., Wishart R. A., Lewis G., Mackinnon A. M. Bile acid synthesis by cultured rabbit hepatocytes: stimulation by three lipoprotein fractions. Biochim Biophys Acta. 1989 Sep 25;1005(2):137–142. doi: 10.1016/0005-2760(89)90179-3. [DOI] [PubMed] [Google Scholar]
  47. Xu G., Salen G., Shefer S., Tint G. S., Kren B. T., Nguyen L. B., Steer C. J., Chen T. S., Salen L., Greenblatt D. Increased bile acid pool inhibits cholesterol 7 alpha-hydroxylase in cholesterol-fed rabbits. Gastroenterology. 1997 Dec;113(6):1958–1965. doi: 10.1016/s0016-5085(97)70016-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES