Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 15;341(Pt 2):355–361.

Molecular analysis of sialoside binding to sialoadhesin by NMR and site-directed mutagenesis.

P R Crocker 1, M Vinson 1, S Kelm 1, K Drickamer 1
PMCID: PMC1220367  PMID: 10393093

Abstract

The molecular interactions between sialoadhesin and sialylated ligands have been investigated by using proton NMR. Addition of ligands to the 12 kDa N-terminal immunoglobulin-like domain of sialoadhesin result in resonance shifts in the protein spectrum that have been used to determine the affinities of sialoadhesin for several sialosides. The results indicate that alpha2, 3-sialyl-lactose and alpha2,6-sialyl-lactose bind respectively 2- and 1.5-fold more strongly than does alpha-methyl-N-acetylneuraminic acid (alpha-Me-NeuAc). The resonances corresponding to the methyl protons within the N-acetyl moiety of sialic acid undergo upfield shifting and broadening during titrations, reflecting an interaction of this group with Trp2 in sialoadhesin as observed in co-crystals of the terminal domain with bound ligand. This resonance shift was used to measure the affinities of mutant and wild-type forms of sialoadhesin in which the first three domains are fused to the Fc region of human IgG1. Substitution of Arg97 by alanine completely abrogated measurable interaction with alpha-Me-NeuAc, whereas a conservative substitution with lysine resulted in a 10-fold decrease in affinity. These results provide the first direct measurement of the affinity of sialoadhesin for sialosides and confirm the critical importance of the conserved arginine in interactions between sialosides and members of the siglec family of sialic acid-binding, immunoglobulin-like lectins.

Full Text

The Full Text of this article is available as a PDF (227.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cornish A. L., Freeman S., Forbes G., Ni J., Zhang M., Cepeda M., Gentz R., Augustus M., Carter K. C., Crocker P. R. Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood. 1998 Sep 15;92(6):2123–2132. [PubMed] [Google Scholar]
  2. Crocker P. R., Clark E. A., Filbin M., Gordon S., Jones Y., Kehrl J. H., Kelm S., Le Douarin N., Powell L., Roder J. Siglecs: a family of sialic-acid binding lectins. Glycobiology. 1998 Feb;8(2):v–v. doi: 10.1093/oxfordjournals.glycob.a018832. [DOI] [PubMed] [Google Scholar]
  3. Crocker P. R., Freeman S., Gordon S., Kelm S. Sialoadhesin binds preferentially to cells of the granulocytic lineage. J Clin Invest. 1995 Feb;95(2):635–643. doi: 10.1172/JCI117708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crocker P. R., Kelm S., Hartnell A., Freeman S., Nath D., Vinson M., Mucklow S. Sialoadhesin and related cellular recognition molecules of the immunoglobulin superfamily. Biochem Soc Trans. 1996 Feb;24(1):150–156. doi: 10.1042/bst0240150. [DOI] [PubMed] [Google Scholar]
  5. Crocker P. R., Mucklow S., Bouckson V., McWilliam A., Willis A. C., Gordon S., Milon G., Kelm S., Bradfield P. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J. 1994 Oct 3;13(19):4490–4503. doi: 10.1002/j.1460-2075.1994.tb06771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drickamer K. Increasing diversity of animal lectin structures. Curr Opin Struct Biol. 1995 Oct;5(5):612–616. doi: 10.1016/0959-440x(95)80052-2. [DOI] [PubMed] [Google Scholar]
  7. Freeman S. D., Kelm S., Barber E. K., Crocker P. R. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood. 1995 Apr 15;85(8):2005–2012. [PubMed] [Google Scholar]
  8. Fruttiger M., Montag D., Schachner M., Martini R. Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur J Neurosci. 1995 Mar 1;7(3):511–515. doi: 10.1111/j.1460-9568.1995.tb00347.x. [DOI] [PubMed] [Google Scholar]
  9. Kelm S., Brossmer R., Isecke R., Gross H. J., Strenge K., Schauer R. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur J Biochem. 1998 Aug 1;255(3):663–672. doi: 10.1046/j.1432-1327.1998.2550663.x. [DOI] [PubMed] [Google Scholar]
  10. Kelm S., Pelz A., Schauer R., Filbin M. T., Tang S., de Bellard M. E., Schnaar R. L., Mahoney J. A., Hartnell A., Bradfield P. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol. 1994 Nov 1;4(11):965–972. doi: 10.1016/s0960-9822(00)00220-7. [DOI] [PubMed] [Google Scholar]
  11. Kelm S., Schauer R., Manuguerra J. C., Gross H. J., Crocker P. R. Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconj J. 1994 Dec;11(6):576–585. doi: 10.1007/BF00731309. [DOI] [PubMed] [Google Scholar]
  12. Klein A., Krishna M., Varki N. M., Varki A. 9-O-acetylated sialic acids have widespread but selective expression: analysis using a chimeric dual-function probe derived from influenza C hemagglutinin-esterase. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7782–7786. doi: 10.1073/pnas.91.16.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kronis K. A., Carver J. P. Specificity of isolectins of wheat germ agglutinin for sialyloligosaccharides: a 360-MHz proton nuclear magnetic resonance binding study. Biochemistry. 1982 Jun 22;21(13):3050–3057. doi: 10.1021/bi00256a003. [DOI] [PubMed] [Google Scholar]
  14. May A. P., Robinson R. C., Aplin R. T., Bradfield P., Crocker P. R., Jones E. Y. Expression, crystallization, and preliminary X-ray analysis of a sialic acid-binding fragment of sialoadhesin in the presence and absence of ligand. Protein Sci. 1997 Mar;6(3):717–721. doi: 10.1002/pro.5560060321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. May A. P., Robinson R. C., Vinson M., Crocker P. R., Jones E. Y. Crystal structure of the N-terminal domain of sialoadhesin in complex with 3' sialyllactose at 1.85 A resolution. Mol Cell. 1998 Apr;1(5):719–728. doi: 10.1016/s1097-2765(00)80071-4. [DOI] [PubMed] [Google Scholar]
  16. Nath D., van der Merwe P. A., Kelm S., Bradfield P., Crocker P. R. The amino-terminal immunoglobulin-like domain of sialoadhesin contains the sialic acid binding site. Comparison with CD22. J Biol Chem. 1995 Nov 3;270(44):26184–26191. doi: 10.1074/jbc.270.44.26184. [DOI] [PubMed] [Google Scholar]
  17. O'Keefe T. L., Williams G. T., Davies S. L., Neuberger M. S. Hyperresponsive B cells in CD22-deficient mice. Science. 1996 Nov 1;274(5288):798–801. doi: 10.1126/science.274.5288.798. [DOI] [PubMed] [Google Scholar]
  18. Perkins S. J., Dwek R. A. Comparisons of ring-current shifts calculated from the crystal structure of egg white lysozyme of hen with the proton nuclear magnetic resonance spectrum of lysozyme in solution. Biochemistry. 1980 Jan 22;19(2):245–258. doi: 10.1021/bi00543a001. [DOI] [PubMed] [Google Scholar]
  19. Powell L. D., Sgroi D., Sjoberg E. R., Stamenkovic I., Varki A. Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem. 1993 Apr 5;268(10):7019–7027. [PubMed] [Google Scholar]
  20. Reuter G., Schauer R. Determination of sialic acids. Methods Enzymol. 1994;230:168–199. doi: 10.1016/0076-6879(94)30012-7. [DOI] [PubMed] [Google Scholar]
  21. Sauter N. K., Bednarski M. D., Wurzburg B. A., Hanson J. E., Whitesides G. M., Skehel J. J., Wiley D. C. Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. Biochemistry. 1989 Oct 17;28(21):8388–8396. doi: 10.1021/bi00447a018. [DOI] [PubMed] [Google Scholar]
  22. Strenge K., Schauer R., Bovin N., Hasegawa A., Ishida H., Kiso M., Kelm S. Glycan specificity of myelin-associated glycoprotein and sialoadhesin deduced from interactions with synthetic oligosaccharides. Eur J Biochem. 1998 Dec 1;258(2):677–685. doi: 10.1046/j.1432-1327.1998.2580677.x. [DOI] [PubMed] [Google Scholar]
  23. Vinson M., van der Merwe P. A., Kelm S., May A., Jones E. Y., Crocker P. R. Characterization of the sialic acid-binding site in sialoadhesin by site-directed mutagenesis. J Biol Chem. 1996 Apr 19;271(16):9267–9272. doi: 10.1074/jbc.271.16.9267. [DOI] [PubMed] [Google Scholar]
  24. Weis W. I., Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem. 1996;65:441–473. doi: 10.1146/annurev.bi.65.070196.002301. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES