Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 15;341(Pt 2):385–393.

Characterization of trehalose phosphorylase from Schizophyllum commune.

C Eis 1, B Nidetzky 1
PMCID: PMC1220371  PMID: 10393097

Abstract

During growth on d-glucose, the basidiomycete Schizophyllum commune produces an intracellular alpha,alpha-trehalose phosphorylase. Specific phosphorylase activity increases steadily during the exponential growth phase, up to a maximum of approx. 0.08 unit/mg of protein, and decreases after the available d-glucose in the medium has been fully depleted. The variation with time of the concentrations of intracellular alpha,alpha-trehalose and Pi is reciprocal to that of trehalose phosphorylase activity, indicating that the enzyme makes temporary use of the pool of alpha, alpha-trehalose (approx. 0.42 mmol/g dry cell) via phosphorolysis. The enzyme has been purified, 150-fold, to homogeneity in 55% yield and characterized. It is a monomeric 61 kDa protein, which seems to lack regulation at the level of enzyme activity. The enzyme catalyses the reversible phosphorolysis of alpha,alpha-trehalose into alpha-d-glucose 1-phosphate and alpha-d-glucose in the absence of cofactors, with a catalytic-centre activity at 30 degrees C of 14 s(-1). Double-reciprocal analysis of the initial velocities for trehalose phosphorolysis and synthesis yields intersecting patterns, and no exchange reaction occurs between alpha-d-glucose 1-phosphate and the phosphate analogue arsenate. Therefore trehalose phosphorylase operates by a ternary-complex, rather than a Ping-Pong, kinetic mechanism. The specificity constants (kcat/Km) of phosphate (6000 M(-1).s(-1)) and alpha-d-glucose 1-phosphate (3500 M(-1).s(-1)) compared with those of alpha,alpha-trehalose (161 M(-1).s(-1)) and d-glucose (260 M(-1).s(-1)), together with the inhibition by NaCl, which is competitive with respect to phosphate with a Ki of 67 mM, suggest an important role for ionic enzyme-phosphate interactions in the catalytic mechanism of trehalose phosphorylase. The isolated enzyme requires alpha,alpha-trehalose (0.1-0.3 M) for its conformational stability.

Full Text

The Full Text of this article is available as a PDF (193.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Masuda T., Chikamune T., Kamitori K. Purification and characterization of trehalose phosphorylase from Catellatospora ferruginea. Biosci Biotechnol Biochem. 1998 Apr;62(4):782–787. doi: 10.1271/bbb.62.782. [DOI] [PubMed] [Google Scholar]
  2. Aisaka K., Masuda T. Production of trehalose phosphorylase by Catellatospora ferruginea. FEMS Microbiol Lett. 1995 Aug 15;131(1):47–51. doi: 10.1016/0378-1097(95)00233-u. [DOI] [PubMed] [Google Scholar]
  3. Belocopitow E., Maréchal L. R. Metabolism of trehalose in Euglena gracilis. Partial purification and some properties of phosphoglucomutase acting on beta-glucose 1-phosphate. Eur J Biochem. 1974 Aug 1;46(3):631–637. doi: 10.1111/j.1432-1033.1974.tb03659.x. [DOI] [PubMed] [Google Scholar]
  4. Belocopitow E., Maréchal L. R. Trehalose phosphorylase from Euglena gracilis. Biochim Biophys Acta. 1970 Jan 14;198(1):151–154. doi: 10.1016/0005-2744(70)90045-8. [DOI] [PubMed] [Google Scholar]
  5. Burbaum J. J., Raines R. T., Albery W. J., Knowles J. R. Evolutionary optimization of the catalytic effectiveness of an enzyme. Biochemistry. 1989 Nov 28;28(24):9293–9305. doi: 10.1021/bi00450a009. [DOI] [PubMed] [Google Scholar]
  6. Cleland W. W. Determining the chemical mechanisms of enzyme-catalyzed reactions by kinetic studies. Adv Enzymol Relat Areas Mol Biol. 1977;45:273–387. doi: 10.1002/9780470122907.ch4. [DOI] [PubMed] [Google Scholar]
  7. Eis C., Albert M., Dax K., Nidetzky B. The stereochemical course of the reaction mechanism of trehalose phosphorylase from Schizophyllum commune. FEBS Lett. 1998 Dec 4;440(3):440–443. doi: 10.1016/s0014-5793(98)01504-x. [DOI] [PubMed] [Google Scholar]
  8. Elbein A. D. The metabolism of alpha,alpha-trehalose. Adv Carbohydr Chem Biochem. 1974;30:227–256. doi: 10.1016/s0065-2318(08)60266-8. [DOI] [PubMed] [Google Scholar]
  9. Maréchal L. R., Belocopitow E. Metabolism of trehalose in Euglena gracilis. I. Partial purification and some properties of trehalose phosphorylase. J Biol Chem. 1972 May 25;247(10):3223–3228. [PubMed] [Google Scholar]
  10. Mieyal J. J., Simon M., Abeles R. H. Mechanism of action of sucrose phosphorylase. 3. The reaction with water and other alcohols. J Biol Chem. 1972 Jan 25;247(2):532–542. [PubMed] [Google Scholar]
  11. Palm D., Klein H. W., Schinzel R., Buehner M., Helmreich E. J. The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis. Biochemistry. 1990 Feb 6;29(5):1099–1107. doi: 10.1021/bi00457a001. [DOI] [PubMed] [Google Scholar]
  12. Richard J. P., Westerfeld J. G., Lin S., Beard J. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion. Biochemistry. 1995 Sep 19;34(37):11713–11724. doi: 10.1021/bi00037a008. [DOI] [PubMed] [Google Scholar]
  13. Saheki S., Takeda A., Shimazu T. Assay of inorganic phosphate in the mild pH range, suitable for measurement of glycogen phosphorylase activity. Anal Biochem. 1985 Aug 1;148(2):277–281. doi: 10.1016/0003-2697(85)90229-5. [DOI] [PubMed] [Google Scholar]
  14. Saito K., Yamazaki H., Ohnishi Y., Fujimoto S., Takahashi E., Horinouchi S. Production of trehalose synthase from a basidiomycete, Grifola frondosa, in Escherichia coli. Appl Microbiol Biotechnol. 1998 Aug;50(2):193–198. doi: 10.1007/s002530051276. [DOI] [PubMed] [Google Scholar]
  15. Salminen S. O., Streeter J. G. Enzymes of alpha,alpha-Trehalose Metabolism in Soybean Nodules. Plant Physiol. 1986 Jun;81(2):538–541. doi: 10.1104/pp.81.2.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thevelein J. M. Regulation of trehalose mobilization in fungi. Microbiol Rev. 1984 Mar;48(1):42–59. doi: 10.1128/mr.48.1.42-59.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Viratelle O. M., Yon J. M. Nucleophilic competition in some -galactosidase-catalyzed reactions. Eur J Biochem. 1973 Feb 15;33(1):110–116. doi: 10.1111/j.1432-1033.1973.tb02661.x. [DOI] [PubMed] [Google Scholar]
  18. WADA H., SNELL E. E. The enzymatic oxidation of pyridoxine and pyridoxamine phosphates. J Biol Chem. 1961 Jul;236:2089–2095. [PubMed] [Google Scholar]
  19. Wannet W. J., Op den Camp H. J., Wisselink H. W., van der Drift C., Van Griensven L. J., Vogels G. D. Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochim Biophys Acta. 1998 Sep 16;1425(1):177–188. doi: 10.1016/s0304-4165(98)00066-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES