Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 15;341(Pt 2):395–400.

Histidine-193 of rat glucosylceramide synthase resides in a UDP-glucose- and inhibitor (D-threo-1-phenyl-2-decanoylamino-3-morpholinopropan-1-ol)-binding region: a biochemical and mutational study.

K Wu 1, D L Marks 1, R Watanabe 1, P Paul 1, N Rajan 1, R E Pagano 1
PMCID: PMC1220372  PMID: 10393098

Abstract

Glucosylceramide synthase (GCS) catalyses the transfer of glucose from UDP-glucose (UDP-Glc) to ceramide to form glucosylceramide, the common precursor of most higher-order glycosphingolipids. Inhibition of GCS activity has been proposed as a possible target of chemotherapeutic agents for a number of diseases, including cancer. Design of new GCS inhibitors with desirable pharmaceutical properties is hampered by lack of knowledge of the secondary structure or catalytic mechanism of the GCS protein. Thus we cloned the rat homologue of GCS to begin studies to identify its catalytic regions. The histidine-modifying agent diethyl pyrocarbonate (DEPC) inhibited recombinant rat GCS expressed in bacteria; this inhibition was rapidly reversible by hydroxylamine and could be diminished by preincubation of GCS with UDP-Glc. These data suggest that DEPC acts on histidine residues within or near the UDP-Glc-binding site of GCS. Mutant proteins were expressed in which the eight histidine residues in GCS were individually replaced by other amino acids. H193A (His193-->Ala) and H193N (His193-->Asn) mutants were unaffected by 0.1 mM DEPC, a concentration that inhibited other histidine mutants and the wild-type enzyme by at least 60%. These results indicate that His193 is the primary target of DEPC and is at, or near, the UDP-Glc-binding site of GCS. His193 mutants were also insensitive to the GCS inhibitor d-threo-1-phenyl-2- decanoylamino-3-morpholinopropan-1-ol, at concentrations which inhibited the wild-type enzyme by >80%. These results have significance for both an understanding of the GCS active site and also for the possible design of new and specific inhibitors of GCS.

Full Text

The Full Text of this article is available as a PDF (160.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe A., Radin N. S., Shayman J. A., Wotring L. L., Zipkin R. E., Sivakumar R., Ruggieri J. M., Carson K. G., Ganem B. Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res. 1995 Mar;36(3):611–621. [PubMed] [Google Scholar]
  2. Basu S., Kaufman B., Roseman S. Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J Biol Chem. 1973 Feb 25;248(4):1388–1394. [PubMed] [Google Scholar]
  3. Coste H., Martel M. B., Got R. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta. 1986 Jun 13;858(1):6–12. doi: 10.1016/0005-2736(86)90285-3. [DOI] [PubMed] [Google Scholar]
  4. Futerman A. H., Pagano R. E. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J. 1991 Dec 1;280(Pt 2):295–302. doi: 10.1042/bj2800295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hakomori S. New directions in cancer therapy based on aberrant expression of glycosphingolipids: anti-adhesion and ortho-signaling therapy. Cancer Cells. 1991 Dec;3(12):461–470. [PubMed] [Google Scholar]
  6. Ichikawa S., Hirabayashi Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 1998 May;8(5):198–202. doi: 10.1016/s0962-8924(98)01249-5. [DOI] [PubMed] [Google Scholar]
  7. Ichikawa S., Ozawa K., Hirabayashi Y. Molecular cloning and expression of mouse ceramide glucosyltransferase. Biochem Mol Biol Int. 1998 May;44(6):1193–1202. doi: 10.1080/15216549800202282. [DOI] [PubMed] [Google Scholar]
  8. Ichikawa S., Sakiyama H., Suzuki G., Hidari K. I., Hirabayashi Y. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4638–4643. doi: 10.1073/pnas.93.10.4638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Inokuchi J., Mason I., Radin N. S. Antitumor activity via inhibition of glycosphingolipid biosynthesis. Cancer Lett. 1987 Dec;38(1-2):23–30. doi: 10.1016/0304-3835(87)90196-0. [DOI] [PubMed] [Google Scholar]
  10. Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kan C. C., Kolesnick R. N. A synthetic ceramide analog, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, selectively inhibits adherence during macrophage differentiation of human leukemia cells. J Biol Chem. 1992 May 15;267(14):9663–9667. [PubMed] [Google Scholar]
  12. Kaneda K., Masuzawa T., Yasugami K., Suzuki T., Suzuki Y., Yanagihara Y. Glycosphingolipid-binding protein of Borrelia burgdorferi sensu lato. Infect Immun. 1997 Aug;65(8):3180–3185. doi: 10.1128/iai.65.8.3180-3185.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaufman B., Basu S., Roseman S. Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem. 1968 Nov 10;243(21):5804–5807. [PubMed] [Google Scholar]
  14. Kyogashima M., Inoue M., Seto A., Inokuchi J. Glucosylceramide synthetase inhibitor, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol exhibits a novel decarcinogenic activity against Shope carcinoma cells. Cancer Lett. 1996 Mar 19;101(1):25–30. doi: 10.1016/0304-3835(95)04106-0. [DOI] [PubMed] [Google Scholar]
  15. Li R., Ladisch S. Abrogation of shedding of immunosuppressive neuroblastoma gangliosides. Cancer Res. 1996 Oct 15;56(20):4602–4605. [PubMed] [Google Scholar]
  16. Liu Y. Y., Han T. Y., Giuliano A. E., Cabot M. C. Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem. 1999 Jan 8;274(2):1140–1146. doi: 10.1074/jbc.274.2.1140. [DOI] [PubMed] [Google Scholar]
  17. Marks D. L., Wu K., Paul P., Kamisaka Y., Watanabe R., Pagano R. E. Oligomerization and topology of the Golgi membrane protein glucosylceramide synthase. J Biol Chem. 1999 Jan 1;274(1):451–456. doi: 10.1074/jbc.274.1.451. [DOI] [PubMed] [Google Scholar]
  18. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  19. Olshefski R., Ladisch S. Synthesis, shedding, and intercellular transfer of human medulloblastoma gangliosides: abrogation by a new inhibitor of glucosylceramide synthase. J Neurochem. 1998 Feb;70(2):467–472. doi: 10.1046/j.1471-4159.1998.70020467.x. [DOI] [PubMed] [Google Scholar]
  20. Paul P., Kamisaka Y., Marks D. L., Pagano R. E. Purification and characterization of UDP-glucose:ceramide glucosyltransferase from rat liver Golgi membranes. J Biol Chem. 1996 Jan 26;271(4):2287–2293. doi: 10.1074/jbc.271.4.2287. [DOI] [PubMed] [Google Scholar]
  21. Platt F. M., Neises G. R., Dwek R. A., Butters T. D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem. 1994 Mar 18;269(11):8362–8365. [PubMed] [Google Scholar]
  22. Platt F. M., Neises G. R., Reinkensmeier G., Townsend M. J., Perry V. H., Proia R. L., Winchester B., Dwek R. A., Butters T. D. Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science. 1997 Apr 18;276(5311):428–431. doi: 10.1126/science.276.5311.428. [DOI] [PubMed] [Google Scholar]
  23. Powers J. C. Reaction of serine proteases with halomethyl ketones. Methods Enzymol. 1977;46:197–208. doi: 10.1016/s0076-6879(77)46020-8. [DOI] [PubMed] [Google Scholar]
  24. Radin N. S. Rationales for cancer chemotherapy with PDMP, a specific inhibitor of glucosylceramide synthase. Mol Chem Neuropathol. 1994 Feb-Apr;21(2-3):111–127. doi: 10.1007/BF02815346. [DOI] [PubMed] [Google Scholar]
  25. Radin N. S., Shayman J. A., Inokuchi J. Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv Lipid Res. 1993;26:183–213. [PubMed] [Google Scholar]
  26. Sandvig K., Garred O., van Helvoort A., van Meer G., van Deurs B. Importance of glycolipid synthesis for butyric acid-induced sensitization to shiga toxin and intracellular sorting of toxin in A431 cells. Mol Biol Cell. 1996 Sep;7(9):1391–1404. doi: 10.1091/mbc.7.9.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shaw E. Selective chemical modification of proteins. Physiol Rev. 1970 Apr;50(2):244–296. doi: 10.1152/physrev.1970.50.2.244. [DOI] [PubMed] [Google Scholar]
  28. Sprong H., Kruithof B., Leijendekker R., Slot J. W., van Meer G., van der Sluijs P. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem. 1998 Oct 2;273(40):25880–25888. doi: 10.1074/jbc.273.40.25880. [DOI] [PubMed] [Google Scholar]
  29. Takami Y., Abe A., Matsuda T., Shayman J. A., Radin N. S., Walter R. J. Effect of an inhibitor of glucosylceramide synthesis on cultured human keratinocytes. J Dermatol. 1998 Feb;25(2):73–77. doi: 10.1111/j.1346-8138.1998.tb02353.x. [DOI] [PubMed] [Google Scholar]
  30. Vunnam R. R., Radin N. S. Analogs of ceramide that inhibit glucocerebroside synthetase in mouse brain. Chem Phys Lipids. 1980 Apr;26(3):265–278. doi: 10.1016/0009-3084(80)90057-2. [DOI] [PubMed] [Google Scholar]
  31. Watanabe R., Wu K., Paul P., Marks D. L., Kobayashi T., Pittelkow M. R., Pagano R. E. Up-regulation of glucosylceramide synthase expression and activity during human keratinocyte differentiation. J Biol Chem. 1998 Apr 17;273(16):9651–9655. doi: 10.1074/jbc.273.16.9651. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES