Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):491–500.

Factors involved in the duodenal expression of the human calbindin-D9k gene.

N F Barley 1, S R Prathalingam 1, P Zhi 1, S Legon 1, A Howard 1, J R Walters 1
PMCID: PMC1220384  PMID: 10417310

Abstract

Calbindin-D9k is expressed in the cytoplasm of intestinal cells, where it is critical for dietary calcium absorption. Two striking aspects of the expression of this gene are its vitamin-D dependency and regional differences in expression, with high levels only in duodenum. We report studies of the human calbindin-D9k promoter. Differences between the reported sequences of the human calbindin-D9k promoter were first clarified before undertaking a functional analysis of this sequence. Studies of the rat gene have indicated that several transcription factors, including the caudal-related homeobox factor (CDX-2), hepatic nuclear factor-4 and CCAAT-enhancer-binding protein alpha (C/EBPalpha), could interact with elements in the promoter. Although these elements are conserved in the human gene, we show here that their intestinal distribution makes them unlikely to be critical positive factors. The calbindin-D9k gene contains multiple potential binding sites for homeobox transcription factors; one of these, known as IPF-1 or PDX-1, co-localizes in the intestine with calbindin-D9k. We show in gel-shift assays that the sequence within a putative vitamin-D-response element in the human calbindin-D9k promoter can bind expressed IPF-1/PDX-1 protein, although we cannot confirm binding of the vitamin-D-receptor protein. CDX-2 binds to the region around the TATA box, as in the rat gene, and may act as a negative factor in the distal intestine. Transfection studies in Caco-2 and MCF-7 cells with heterologous reporter vectors containing up to 1303 bp of the gene showed that this functioned as a weak promoter and indicated the presence of suppressor sequences, but did not show vitamin-D responsiveness. This indicates that other elements are also needed for the control of human calbindin-D9k expression.

Full Text

The Full Text of this article is available as a PDF (282.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bretherton-Watt D., Gore N., Boam D. S. Insulin upstream factor 1 and a novel ubiquitous factor bind to the human islet amyloid polypeptide/amylin gene promoter. Biochem J. 1996 Jan 15;313(Pt 2):495–502. doi: 10.1042/bj3130495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chandrasekaran C., Gordon J. I. Cell lineage-specific and differentiation-dependent patterns of CCAAT/enhancer binding protein alpha expression in the gut epithelium of normal and transgenic mice. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8871–8875. doi: 10.1073/pnas.90.19.8871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christakos S., Gill R., Lee S., Li H. Molecular aspects of the calbindins. J Nutr. 1992 Mar;122(3 Suppl):678–682. doi: 10.1093/jn/122.suppl_3.678. [DOI] [PubMed] [Google Scholar]
  4. Christakos S., Raval-Pandya M., Wernyj R. P., Yang W. Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin D3. Biochem J. 1996 Jun 1;316(Pt 2):361–371. doi: 10.1042/bj3160361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colnot S., Romagnolo B., Lambert M., Cluzeaud F., Porteu A., Vandewalle A., Thomasset M., Kahn A., Perret C. Intestinal expression of the calbindin-D9K gene in transgenic mice. Requirement for a Cdx2-binding site in a distal activator region. J Biol Chem. 1998 Nov 27;273(48):31939–31946. doi: 10.1074/jbc.273.48.31939. [DOI] [PubMed] [Google Scholar]
  6. Darwish H. M., DeLuca H. F. Identification of a 1,25-dihydroxyvitamin D3-response element in the 5'-flanking region of the rat calbindin D-9k gene. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):603–607. doi: 10.1073/pnas.89.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delvin E. E., Lopez V., Levy E., Ménard D. Developmental expression of calcitriol receptors, 9-kilodalton calcium-binding protein, and calcidiol 24-hydroxylase in human intestine. Pediatr Res. 1996 Nov;40(5):664–670. doi: 10.1203/00006450-199611000-00004. [DOI] [PubMed] [Google Scholar]
  8. Drummond F., Sowden J., Morrison K., Edwards Y. H. The caudal-type homeobox protein Cdx-2 binds to the colon promoter of the carbonic anhydrase 1 gene. Eur J Biochem. 1996 Mar 1;236(2):670–681. doi: 10.1111/j.1432-1033.1996.t01-1-00670.x. [DOI] [PubMed] [Google Scholar]
  9. Dyer R. B., Herzog N. K. Isolation of intact nuclei for nuclear extract preparation from a fragile B-lymphocyte cell line. Biotechniques. 1995 Aug;19(2):192–195. [PubMed] [Google Scholar]
  10. Feher J. J., Fullmer C. S., Wasserman R. H. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol. 1992 Feb;262(2 Pt 1):C517–C526. doi: 10.1152/ajpcell.1992.262.2.C517. [DOI] [PubMed] [Google Scholar]
  11. Fleet J. C., Wood R. J. Identification of calbindin D-9k mRNA and its regulation by 1,25-dihydroxyvitamin D3 in Caco-2 cells. Arch Biochem Biophys. 1994 Jan;308(1):171–174. doi: 10.1006/abbi.1994.1024. [DOI] [PubMed] [Google Scholar]
  12. Howard A., Legon S., Spurr N. K., Walters J. R. Molecular cloning and chromosomal assignment of human calbindin-D9k. Biochem Biophys Res Commun. 1992 Jun 15;185(2):663–669. doi: 10.1016/0006-291x(92)91676-h. [DOI] [PubMed] [Google Scholar]
  13. Howard A., Legon S., Walters J. R. Human and rat intestinal plasma membrane calcium pump isoforms. Am J Physiol. 1993 Nov;265(5 Pt 1):G917–G925. doi: 10.1152/ajpgi.1993.265.5.G917. [DOI] [PubMed] [Google Scholar]
  14. Howard A., Legon S., Walters J. R. Plasma membrane calcium pump expression in human placenta and small intestine. Biochem Biophys Res Commun. 1992 Mar 16;183(2):499–505. doi: 10.1016/0006-291x(92)90510-r. [DOI] [PubMed] [Google Scholar]
  15. Inoue H., Riggs A. C., Tanizawa Y., Ueda K., Kuwano A., Liu L., Donis-Keller H., Permutt M. A. Isolation, characterization, and chromosomal mapping of the human insulin promoter factor 1 (IPF-1) gene. Diabetes. 1996 Jun;45(6):789–794. doi: 10.2337/diab.45.6.789. [DOI] [PubMed] [Google Scholar]
  16. James R., Kazenwadel J. Homeobox gene expression in the intestinal epithelium of adult mice. J Biol Chem. 1991 Feb 15;266(5):3246–3251. [PubMed] [Google Scholar]
  17. Jeung E. B., Krisinger J., Dann J. L., Leung P. C. Molecular cloning of the full-length cDNA encoding the human calbindin-D9k. FEBS Lett. 1992 Jul 28;307(2):224–228. doi: 10.1016/0014-5793(92)80772-9. [DOI] [PubMed] [Google Scholar]
  18. Jeung E. B., Leung P. C., Krisinger J. The human calbindin-D9k gene. Complete structure and implications on steroid hormone regulation. J Mol Biol. 1994 Jan 28;235(4):1231–1238. doi: 10.1006/jmbi.1994.1076. [DOI] [PubMed] [Google Scholar]
  19. Jonsson J., Carlsson L., Edlund T., Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994 Oct 13;371(6498):606–609. doi: 10.1038/371606a0. [DOI] [PubMed] [Google Scholar]
  20. Kimmel-Jehan C., Jehan F., DeLuca H. F. Salt concentration determines 1,25-dihydroxyvitamin D3 dependency of vitamin D receptor-retinoid X receptor--vitamin D-responsive element complex formation. Arch Biochem Biophys. 1997 May 1;341(1):75–80. doi: 10.1006/abbi.1997.9952. [DOI] [PubMed] [Google Scholar]
  21. Lambert M., Colnot S., Suh E., L'Horset F., Blin C., Calliot M. E., Raymondjean M., Thomasset M., Traber P. G., Perret C. cis-Acting elements and transcription factors involved in the intestinal specific expression of the rat calbindin-D9K gene: binding of the intestine-specific transcription factor Cdx-2 to the TATA box. Eur J Biochem. 1996 Mar 15;236(3):778–788. doi: 10.1111/j.1432-1033.1996.00778.x. [DOI] [PubMed] [Google Scholar]
  22. Lee S. Y., Nagy B. P., Brooks A. R., Wang D. M., Paulweber B., Levy-Wilson B. Members of the caudal family of homeodomain proteins repress transcription from the human apolipoprotein B promoter in intestinal cells. J Biol Chem. 1996 Jan 12;271(2):707–718. doi: 10.1074/jbc.271.2.707. [DOI] [PubMed] [Google Scholar]
  23. Leibiger I. B., Schwarz T., Leibiger B., Walther R. Functional analysis of a newly identified TAAT-box of the rat insulin-II gene promoter. FEBS Lett. 1995 Apr 3;362(2):210–214. doi: 10.1016/0014-5793(95)00243-3. [DOI] [PubMed] [Google Scholar]
  24. Leonard J., Peers B., Johnson T., Ferreri K., Lee S., Montminy M. R. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol. 1993 Oct;7(10):1275–1283. doi: 10.1210/mend.7.10.7505393. [DOI] [PubMed] [Google Scholar]
  25. Miller C. P., McGehee R. E., Jr, Habener J. F. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 1994 Mar 1;13(5):1145–1156. doi: 10.1002/j.1460-2075.1994.tb06363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morrison N. A., Shine J., Fragonas J. C., Verkest V., McMenemy M. L., Eisman J. A. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science. 1989 Dec 1;246(4934):1158–1161. doi: 10.1126/science.2588000. [DOI] [PubMed] [Google Scholar]
  27. Offield M. F., Jetton T. L., Labosky P. A., Ray M., Stein R. W., Magnuson M. A., Hogan B. L., Wright C. V. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996 Mar;122(3):983–995. doi: 10.1242/dev.122.3.983. [DOI] [PubMed] [Google Scholar]
  28. Ohlsson H., Thor S., Edlund T. Novel insulin promoter- and enhancer-binding proteins that discriminate between pancreatic alpha- and beta-cells. Mol Endocrinol. 1991 Jul;5(7):897–904. doi: 10.1210/mend-5-7-897. [DOI] [PubMed] [Google Scholar]
  29. Perret C., L'Horset F., Thomasset M. DNase I-hypersensitive sites are associated, in a tissue-specific manner, with expression of the calbindin-D9k-encoding gene. Gene. 1991 Dec 15;108(2):227–235. doi: 10.1016/0378-1119(91)90438-h. [DOI] [PubMed] [Google Scholar]
  30. Peshavaria M., Gamer L., Henderson E., Teitelman G., Wright C. V., Stein R. XIHbox 8, an endoderm-specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor. Mol Endocrinol. 1994 Jun;8(6):806–816. doi: 10.1210/mend.8.6.7935494. [DOI] [PubMed] [Google Scholar]
  31. Prathalingam S. R., Howard A., Barley N. F., Legon S., Walters J. R. Inhibition of luciferase expression from a commercial reporter vector by 1,25-dihydroxycholecalciferol. Anal Biochem. 1998 Oct 1;263(1):113–115. doi: 10.1006/abio.1998.2815. [DOI] [PubMed] [Google Scholar]
  32. Romagnolo B., Cluzeaud F., Lambert M., Colnot S., Porteu A., Molina T., Tomasset M., Vandewalle A., Kahn A., Perret C. Tissue-specific and hormonal regulation of calbindin-D9K fusion genes in transgenic mice. J Biol Chem. 1996 Jul 12;271(28):16820–16826. doi: 10.1074/jbc.271.28.16820. [DOI] [PubMed] [Google Scholar]
  33. Sandgren M. E., Brönnegärd M., DeLuca H. F. Tissue distribution of the 1,25-dihydroxyvitamin D3 receptor in the male rat. Biochem Biophys Res Commun. 1991 Dec 16;181(2):611–616. doi: 10.1016/0006-291x(91)91234-4. [DOI] [PubMed] [Google Scholar]
  34. Schräder M., Nayeri S., Kahlen J. P., Müller K. M., Carlberg C. Natural vitamin D3 response elements formed by inverted palindromes: polarity-directed ligand sensitivity of vitamin D3 receptor-retinoid X receptor heterodimer-mediated transactivation. Mol Cell Biol. 1995 Mar;15(3):1154–1161. doi: 10.1128/mcb.15.3.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Serfas M. S., Tyner A. L. HNF-1 alpha and HNF-1 beta expression in mouse intestinal crypts. Am J Physiol. 1993 Sep;265(3 Pt 1):G506–G513. doi: 10.1152/ajpgi.1993.265.3.G506. [DOI] [PubMed] [Google Scholar]
  36. Simon T. C., Roberts L. J., Gordon J. I. A 20-nucleotide element in the intestinal fatty acid binding protein gene modulates its cell lineage-specific, differentiation-dependent, and cephalocaudal patterns of expression in transgenic mice. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8685–8689. doi: 10.1073/pnas.92.19.8685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Staun M., Boesby S., Daugaard H., Jarnum S. Calcium-binding protein in human duodenal biopsies. Calcif Tissue Int. 1988 Apr;42(4):205–209. doi: 10.1007/BF02553745. [DOI] [PubMed] [Google Scholar]
  38. Staun M. Distribution of the 10,000 molecular weight calcium binding protein along the small and large intestine of man. Gut. 1987 Jul;28(7):878–882. doi: 10.1136/gut.28.7.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Suh E., Traber P. G. An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol. 1996 Feb;16(2):619–625. doi: 10.1128/mcb.16.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thomasset M., Parkes C. O., Cuisinier-Gleizes P. Rat calcium-binding proteins: distribution, development, and vitamin D dependence. Am J Physiol. 1982 Dec;243(6):E483–E488. doi: 10.1152/ajpendo.1982.243.6.E483. [DOI] [PubMed] [Google Scholar]
  41. Thompson P. D., Jurutka P. W., Haussler C. A., Whitfield G. K., Haussler M. R. Heterodimeric DNA binding by the vitamin D receptor and retinoid X receptors is enhanced by 1,25-dihydroxyvitamin D3 and inhibited by 9-cis-retinoic acid. Evidence for allosteric receptor interactions. J Biol Chem. 1998 Apr 3;273(14):8483–8491. doi: 10.1074/jbc.273.14.8483. [DOI] [PubMed] [Google Scholar]
  42. Umesono K., Murakami K. K., Thompson C. C., Evans R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. doi: 10.1016/0092-8674(91)90020-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vallejo M., Penchuk L., Habener J. F. Somatostatin gene upstream enhancer element activated by a protein complex consisting of CREB, Isl-1-like, and alpha-CBF-like transcription factors. J Biol Chem. 1992 Jun 25;267(18):12876–12884. [PubMed] [Google Scholar]
  44. Waeber G., Thompson N., Nicod P., Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol. 1996 Nov;10(11):1327–1334. doi: 10.1210/mend.10.11.8923459. [DOI] [PubMed] [Google Scholar]
  45. Walters J. R. Calbindin-D9k stimulates the calcium pump in rat enterocyte basolateral membranes. Am J Physiol. 1989 Jan;256(1 Pt 1):G124–G128. doi: 10.1152/ajpgi.1989.256.1.G124. [DOI] [PubMed] [Google Scholar]
  46. Walters J. R., Howard A., Lowery L. J., Mawer E. B., Legon S. Expression of genes involved in calcium absorption in human duodenum. Eur J Clin Invest. 1999 Mar;29(3):214–219. doi: 10.1046/j.1365-2362.1999.00439.x. [DOI] [PubMed] [Google Scholar]
  47. Walters J. R., Howard A., Rumble H. E., Prathalingam S. R., Shaw-Smith C. J., Legon S. Differences in expression of homeobox transcription factors in proximal and distal human small intestine. Gastroenterology. 1997 Aug;113(2):472–477. doi: 10.1053/gast.1997.v113.pm9247466. [DOI] [PubMed] [Google Scholar]
  48. Watada H., Kajimoto Y., Kaneto H., Matsuoka T., Fujitani Y., Miyazaki J. i., Yamasaki Y. Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun. 1996 Dec 24;229(3):746–751. doi: 10.1006/bbrc.1996.1875. [DOI] [PubMed] [Google Scholar]
  49. Yoshizawa T., Handa Y., Uematsu Y., Takeda S., Sekine K., Yoshihara Y., Kawakami T., Arioka K., Sato H., Uchiyama Y. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet. 1997 Aug;16(4):391–396. doi: 10.1038/ng0897-391. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES