Abstract
Adenylosuccinate synthase (EC 6.3.4.4) catalyses the first committed step in the synthesis of adenosine. We have overexpressed the cloned gene of Saccharomyces cerevisiae (ADE12) in S. cerevisiae. The recombinant enzyme exhibits similar kinetic behaviour to that of the native enzyme purified from S. cerevisiae. This ter-reactant dimeric enzyme shows Michaelis-Menten kinetics only with IMP. l-Aspartate and GTP display a weak negative co-operativity (Hill coefficient 0. 8-0.9). This negative co-operativity has not yet been reported for adenylosuccinate synthases from other organisms. Another unusual feature of the enzyme from S. cerevisiae is its negligible inhibition by adenine nucleotides and its pronounced inhibition by Cl(-) ions.
Full Text
The Full Text of this article is available as a PDF (166.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreichuk Iu V., Shabes A. V., Ryzhova T. A., Kotova I. A., Domkin V. D. Gen ADE12 drozhzhei Saccharomyces cerevisiae, kodiruiushchii adenilosuktsii-sintetazu (KF 6.3.4.4). Klonirovanie, sekvenirovanie, izuchenie ékspressii, superproduktsiia. Mol Gen Mikrobiol Virusol. 1995 Jan-Mar;(1):21–28. [PubMed] [Google Scholar]
- Baldari C., Murray J. A., Ghiara P., Cesareni G., Galeotti C. L. A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. 1987 Jan;6(1):229–234. doi: 10.1002/j.1460-2075.1987.tb04743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bass M. B., Fromm H. J., Rudolph F. B. The mechanism of the adenylosuccinate synthetase reaction as studied by positional isotope exchange. J Biol Chem. 1984 Oct 25;259(20):12330–12333. [PubMed] [Google Scholar]
- Bouyoub A., Barbier G., Forterre P., Labedan B. The adenylosuccinate synthetase from the hyperthermophilic archaeon Pyrococcus species displays unusual structural features. J Mol Biol. 1996 Aug 16;261(2):144–154. doi: 10.1006/jmbi.1996.0448. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Denis V., Boucherie H., Monribot C., Daignan-Fornier B. Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol Microbiol. 1998 Nov;30(3):557–566. doi: 10.1046/j.1365-2958.1998.01087.x. [DOI] [PubMed] [Google Scholar]
- Dohmen R. J., Strasser A. W., Höner C. B., Hollenberg C. P. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast. 1991 Oct;7(7):691–692. doi: 10.1002/yea.320070704. [DOI] [PubMed] [Google Scholar]
- Ehresmann B., Imbault P., Weil J. H. Spectrophotometric determination of protein concentration in cell extracts containing tRNA's and rRNA's. Anal Biochem. 1973 Aug;54(2):454–463. doi: 10.1016/0003-2697(73)90374-6. [DOI] [PubMed] [Google Scholar]
- Fonné-Pfister R., Chemla P., Ward E., Girardet M., Kreuz K. E., Honzatko R. B., Fromm H. J., Schär H. P., Grütter M. G., Cowan-Jacob S. W. The mode of action and the structure of a herbicide in complex with its target: binding of activated hydantocidin to the feedback regulation site of adenylosuccinate synthetase. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9431–9436. doi: 10.1073/pnas.93.18.9431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fonzi W. A., Shanley M., Opheim D. J. Relationship of glycolytic intermediates, glycolytic enzymes, and ammonia to glycogen metabolism during sporulation in the yeast Saccharomyces cerevisiae. J Bacteriol. 1979 Jan;137(1):285–294. doi: 10.1128/jb.137.1.285-294.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallert K. C., Ohanjan T., Daignan-Fornier B., Lottspeich F., Krauss G. Enzymatic properties and inhibition by single-stranded autonomously replicating sequences of adenylosuccinate synthase from Saccharomyces cerevisiae. Eur J Biochem. 1996 Jul 15;239(2):487–493. doi: 10.1111/j.1432-1033.1996.0487u.x. [DOI] [PubMed] [Google Scholar]
- Hunter T., Plowman G. D. The protein kinases of budding yeast: six score and more. Trends Biochem Sci. 1997 Jan;22(1):18–22. doi: 10.1016/s0968-0004(96)10068-2. [DOI] [PubMed] [Google Scholar]
- Jones E. W. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 1991;194:428–453. doi: 10.1016/0076-6879(91)94034-a. [DOI] [PubMed] [Google Scholar]
- Kang C., Kim S., Fromm H. J. Subunit complementation of Escherichia coli adenylosuccinate synthetase. J Biol Chem. 1996 Nov 22;271(47):29722–29728. doi: 10.1074/jbc.271.47.29722. [DOI] [PubMed] [Google Scholar]
- Kang C., Sun N., Poland B. W., Gorrell A., Honzatko R. B., Fromm H. J. Residues essential for catalysis and stability of the active site of Escherichia coli adenylosuccinate synthetase as revealed by directed mutation and kinetics. J Biol Chem. 1997 May 2;272(18):11881–11885. doi: 10.1074/jbc.272.18.11881. [DOI] [PubMed] [Google Scholar]
- Kuzmic P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem. 1996 Jun 1;237(2):260–273. doi: 10.1006/abio.1996.0238. [DOI] [PubMed] [Google Scholar]
- Levitzki A., Schlessinger J. Cooperativity in associating proteins. Monomer-dimer equilibrium coupled to ligand binding. Biochemistry. 1974 Dec 3;13(25):5214–5219. doi: 10.1021/bi00722a026. [DOI] [PubMed] [Google Scholar]
- Liljelund P., Lacroute F. Genetic characterization and isolation of the Saccharomyces cerevisiae gene coding for uridine monophosphokinase. Mol Gen Genet. 1986 Oct;205(1):74–81. doi: 10.1007/BF02428034. [DOI] [PubMed] [Google Scholar]
- Markham G. D., Reed G. H. Adenylosuccinate synthetase from Azotobacter vinelandii: purification, properties and steady-state kinetics. Arch Biochem Biophys. 1977 Nov;184(1):24–35. doi: 10.1016/0003-9861(77)90322-8. [DOI] [PubMed] [Google Scholar]
- Matsuda Y., Ogawa H., Fukutome S., Shiraki H., Nakagawa H. Adenylosuccinate synthetase in rat liver: the existence of two types and their regulatory roles. Biochem Biophys Res Commun. 1977 Sep 23;78(2):766–771. doi: 10.1016/0006-291x(77)90245-5. [DOI] [PubMed] [Google Scholar]
- Muirhead K. M., Bishop S. H. Purification of adenylosuccinate synthetase from rabbit skeletal muscle. J Biol Chem. 1974 Jan 25;249(2):459–464. [PubMed] [Google Scholar]
- Nagy M., Djembo-Taty M., Heslot Regulation of the biosynthesis of purine nucleotides in Schizosaccharomyces pombe. 3. Kinetic studies of adenylosuccinate synthetase. Biochim Biophys Acta. 1973 May 5;309(1):1–10. doi: 10.1016/0005-2744(73)90311-2. [DOI] [PubMed] [Google Scholar]
- Ogawa H., Shiraki H., Matsuda Y., Kakiuchi K., Nakagawa H. Purification, crystallization, and properties of adenylosuccinate synthetase from rat skeletal muscle. J Biochem. 1977 Apr;81(4):859–869. doi: 10.1093/oxfordjournals.jbchem.a131550. [DOI] [PubMed] [Google Scholar]
- Poland B. W., Silva M. M., Serra M. A., Cho Y., Kim K. H., Harris E. M., Honzatko R. B. Crystal structure of adenylosuccinate synthetase from Escherichia coli. Evidence for convergent evolution of GTP-binding domains. J Biol Chem. 1993 Dec 5;268(34):25334–25342. [PubMed] [Google Scholar]
- Rudolph F. B., Fromm H. J. Initial rate studies of adenylosuccinate synthetase with product and competitive inhibitors. J Biol Chem. 1969 Jul 25;244(14):3832–3839. [PubMed] [Google Scholar]
- Ryzhova T. A., Andreichuk Y. V., Domkin V. D. Adenylosuccinate synthetase of the yeast Saccharomyces cerevisiae: purification and properties. Biochemistry (Mosc) 1998 Jun;63(6):650–656. [PubMed] [Google Scholar]
- Spector T., Jones T. E., Elion G. B. Specificity of adenylosuccinate synthetase and adenylosuccinate lyase from Leishmania donovani. Selective amination of an antiprotozoal agent. J Biol Chem. 1979 Sep 10;254(17):8422–8426. [PubMed] [Google Scholar]
- Speiser D. M., Ortiz D. F., Kreppel L., Scheel G., McDonald G., Ow D. W. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol Cell Biol. 1992 Dec;12(12):5301–5310. doi: 10.1128/mcb.12.12.5301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sticht H., Gallert K. C., Krauss G., Rösch P. Homology modeling of adenylosuccinate synthetase from Saccharomyces cerevisiae reveals a possible binding region for single-stranded ARS sequences. J Biomol Struct Dyn. 1997 Jun;14(6):667–675. doi: 10.1080/07391102.1997.10508170. [DOI] [PubMed] [Google Scholar]
- Tanaka A., Chance B., Wehrli S. Time-resolved magnetic resonance spectroscopic study of freeze-trapped yeast. Biochim Biophys Acta. 1989 Dec 8;993(2-3):280–286. doi: 10.1016/0304-4165(89)90177-3. [DOI] [PubMed] [Google Scholar]
- WYNGAARDEN J. B., GREENLAND R. A. The inhibition of succinoadenylate kinosynthetase of Escherichia coli by adenosine and guanosine 5'-monophosphates. J Biol Chem. 1963 Mar;238:1054–1057. [PubMed] [Google Scholar]
- Wang W., Gorrell A., Honzatko R. B., Fromm H. J. A study of Escherichia coli adenylosuccinate synthetase association states and the interface residues of the homodimer. J Biol Chem. 1997 Mar 14;272(11):7078–7084. doi: 10.1074/jbc.272.11.7078. [DOI] [PubMed] [Google Scholar]
- Wang W., Hou Z., Honzatko R. B., Fromm H. J. Relationship of conserved residues in the IMP binding site to substrate recognition and catalysis in Escherichia coli adenylosuccinate synthetase. J Biol Chem. 1997 Jul 4;272(27):16911–16916. doi: 10.1074/jbc.272.27.16911. [DOI] [PubMed] [Google Scholar]
- Zeidler R., Hobert O., Johannes L., Faulhammer H., Krauss G. Characterization of two novel single-stranded DNA-specific autonomously replicating sequence-binding proteins from Saccharomyces cerevisiae, one of which is adenylosuccinate synthetase. J Biol Chem. 1993 Sep 25;268(27):20191–20197. [PubMed] [Google Scholar]