Abstract
Molecular chaperones are presumed to associate with large secretory mucin glycoproteins during their synthesis in the endoplasmic reticulum (ER), but have not been identified to date. We decided to look for possible involvement of the chaperones calreticulin (CRT) and calnexin (CLN) during synthesis of two similar gastrointestinal mucins, MUC2 and MUC5AC. Pulse-chase labelling of MUC2 and MUC5AC with [(35)S]methionine/cysteine ([(35)S]Promix) was performed using LS180 and HT29/A1 colonic carcinoma cell lines and was followed by immunoprecipitation with anti-mucin and anti-chaperone antibodies. The precipitated labelled mucin precursors were analysed by SDS/PAGE and autoradiography. Using antibodies specific for each mucin, newly synthesized monomeric precursors of both MUC2 and MUC5AC were detected after a 15 min pulse and then disappeared as oligomers were formed during a 2 h chase period. Only homo-oligomers of MUC2 and MUC5AC were present in the cells. Using anti-CRT, the MUC2 monomeric precursor and oligomer were co-precipitated from both cell lines after a 15 min pulse and the oligomer less strongly after a 0.5 h chase, but there was little co-precipitation after a 2 h chase. At this time, MUC2 immunoprecipitated by anti-MUC2 was completely oligomerized and was endo-beta-N-acetylglucosaminidase-resistant, indicating that the mucin had reached the Golgi region. MUC2 co-precipitated with CRT at zero time and 0.5 h was endo-beta-N-acetylglucosaminidase-sensitive; therefore CRT must have associated with MUC2 in the ER. Treatment with tunicamycin (TUN) diminished the binding of MUC2 to CRT, suggesting a requirement for initial N-glycan addition during this process. Using anti-CLN, only a weak co-precipitation of MUC2, compared with that seen with anti-CRT, was detected in LS180 cells. In contrast with the findings for MUC2, there was no co-precipitation of MUC5AC with CRT or CLN from either cell line at the various time points. In conclusion, CRT and CLN appear to be involved in MUC2 synthesis at the stage of folding and oligomerization in the ER. Since no interaction of the chaperones with MUC5AC was detected at a similar stage of synthesis, these two structurally similar secretory mucins seem to have different chaperone requirements in the ER.
Full Text
The Full Text of this article is available as a PDF (262.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asker N., Axelsson M. A., Olofsson S. O., Hansson G. C. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem. 1998 Jul 24;273(30):18857–18863. doi: 10.1074/jbc.273.30.18857. [DOI] [PubMed] [Google Scholar]
- Asker N., Axelsson M. A., Olofsson S. O., Hansson G. C. Human MUC5AC mucin dimerizes in the rough endoplasmic reticulum, similarly to the MUC2 mucin. Biochem J. 1998 Oct 15;335(Pt 2):381–387. doi: 10.1042/bj3350381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baksh S., Burns K., Andrin C., Michalak M. Interaction of calreticulin with protein disulfide isomerase. J Biol Chem. 1995 Dec 29;270(52):31338–31344. doi: 10.1074/jbc.270.52.31338. [DOI] [PubMed] [Google Scholar]
- Bass J., Chiu G., Argon Y., Steiner D. F. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol. 1998 May 4;141(3):637–646. doi: 10.1083/jcb.141.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell S. L., Khatri I. A., Xu G., Forstner J. F. Evidence that a peptide corresponding to the rat Muc2 C-terminus undergoes disulphide-mediated dimerization. Eur J Biochem. 1998 Apr 1;253(1):123–131. doi: 10.1046/j.1432-1327.1998.2530123.x. [DOI] [PubMed] [Google Scholar]
- Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 1997 May;7(5):193–200. doi: 10.1016/S0962-8924(97)01032-5. [DOI] [PubMed] [Google Scholar]
- Dong Z., Thoma R. S., Crimmins D. L., McCourt D. W., Tuley E. A., Sadler J. E. Disulfide bonds required to assemble functional von Willebrand factor multimers. J Biol Chem. 1994 Mar 4;269(9):6753–6758. [PubMed] [Google Scholar]
- Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
- Gilbert H. F. Protein disulfide isomerase and assisted protein folding. J Biol Chem. 1997 Nov 21;272(47):29399–29402. doi: 10.1074/jbc.272.47.29399. [DOI] [PubMed] [Google Scholar]
- Gum J. R., Byrd J. C., Hicks J. W., Toribara N. W., Lamport D. T., Kim Y. S. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem. 1989 Apr 15;264(11):6480–6487. [PubMed] [Google Scholar]
- Gum J. R., Jr, Hicks J. W., Toribara N. W., Siddiki B., Kim Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem. 1994 Jan 28;269(4):2440–2446. [PubMed] [Google Scholar]
- Hammond C., Helenius A. Quality control in the secretory pathway. Curr Opin Cell Biol. 1995 Aug;7(4):523–529. doi: 10.1016/0955-0674(95)80009-3. [DOI] [PubMed] [Google Scholar]
- Harris M. R., Yu Y. Y., Kindle C. S., Hansen T. H., Solheim J. C. Calreticulin and calnexin interact with different protein and glycan determinants during the assembly of MHC class I. J Immunol. 1998 Jun 1;160(11):5404–5409. [PubMed] [Google Scholar]
- Hebert D. N., Foellmer B., Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 1996 Jun 17;15(12):2961–2968. [PMC free article] [PubMed] [Google Scholar]
- Hebert D. N., Foellmer B., Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 1995 May 5;81(3):425–433. doi: 10.1016/0092-8674(95)90395-x. [DOI] [PubMed] [Google Scholar]
- Kaushal G. P., Elbein A. D. Glycosidase inhibitors in study of glycoconjugates. Methods Enzymol. 1994;230:316–329. doi: 10.1016/0076-6879(94)30021-6. [DOI] [PubMed] [Google Scholar]
- Klomp L. W., van Rens L., Strous G. J. Identification of a human gastric mucin precursor: N-linked glycosylation and oligomerization. Biochem J. 1994 Dec 15;304(Pt 3):693–698. doi: 10.1042/bj3040693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krause K. H., Michalak M. Calreticulin. Cell. 1997 Feb 21;88(4):439–443. doi: 10.1016/s0092-8674(00)81884-x. [DOI] [PubMed] [Google Scholar]
- Kreusel K. M., Fromm M., Schulzke J. D., Hegel U. Cl- secretion in epithelial monolayers of mucus-forming human colon cells (HT-29/B6). Am J Physiol. 1991 Oct;261(4 Pt 1):C574–C582. doi: 10.1152/ajpcell.1991.261.4.C574. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li D., Gallup M., Fan N., Szymkowski D. E., Basbaum C. B. Cloning of the amino-terminal and 5'-flanking region of the human MUC5AC mucin gene and transcriptional up-regulation by bacterial exoproducts. J Biol Chem. 1998 Mar 20;273(12):6812–6820. doi: 10.1074/jbc.273.12.6812. [DOI] [PubMed] [Google Scholar]
- McCool D. J., Forstner J. F., Forstner G. G. Regulated and unregulated pathways for MUC2 mucin secretion in human colonic LS180 adenocarcinoma cells are distinct. Biochem J. 1995 Nov 15;312(Pt 1):125–133. doi: 10.1042/bj3120125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCool D. J., Forstner J. F., Forstner G. G. Synthesis and secretion of mucin by the human colonic tumour cell line LS180. Biochem J. 1994 Aug 15;302(Pt 1):111–118. doi: 10.1042/bj3020111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalak M., Milner R. E., Burns K., Opas M. Calreticulin. Biochem J. 1992 Aug 1;285(Pt 3):681–692. doi: 10.1042/bj2850681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nauseef W. M., McCormick S. J., Clark R. A. Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem. 1995 Mar 3;270(9):4741–4747. doi: 10.1074/jbc.270.9.4741. [DOI] [PubMed] [Google Scholar]
- Nauseef W. M., McCormick S. J., Goedken M. Coordinated participation of calreticulin and calnexin in the biosynthesis of myeloperoxidase. J Biol Chem. 1998 Mar 20;273(12):7107–7111. doi: 10.1074/jbc.273.12.7107. [DOI] [PubMed] [Google Scholar]
- Ou W. J., Cameron P. H., Thomas D. Y., Bergeron J. J. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993 Aug 26;364(6440):771–776. doi: 10.1038/364771a0. [DOI] [PubMed] [Google Scholar]
- Peterson J. R., Ora A., Van P. N., Helenius A. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell. 1995 Sep;6(9):1173–1184. doi: 10.1091/mbc.6.9.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pipe S. W., Morris J. A., Shah J., Kaufman R. J. Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin. J Biol Chem. 1998 Apr 3;273(14):8537–8544. doi: 10.1074/jbc.273.14.8537. [DOI] [PubMed] [Google Scholar]
- Rojiani M. V., Finlay B. B., Gray V., Dedhar S. In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin alpha subunits. Biochemistry. 1991 Oct 15;30(41):9859–9866. doi: 10.1021/bi00105a008. [DOI] [PubMed] [Google Scholar]
- Ruddon R. W., Bedows E. Assisted protein folding. J Biol Chem. 1997 Feb 7;272(6):3125–3128. doi: 10.1074/jbc.272.6.3125. [DOI] [PubMed] [Google Scholar]
- Sotozono M., Okada Y., Sasagawa T., Nakatou T., Yoshida A., Yokoi T., Kubota M., Tsuji T. Novel monoclonal antibody, SO-MU1, against human gastric MUC5AC apomucin. J Immunol Methods. 1996 Jun 10;192(1-2):87–96. doi: 10.1016/0022-1759(96)00025-7. [DOI] [PubMed] [Google Scholar]
- Specian R. D., Oliver M. G. Functional biology of intestinal goblet cells. Am J Physiol. 1991 Feb;260(2 Pt 1):C183–C193. doi: 10.1152/ajpcell.1991.260.2.C183. [DOI] [PubMed] [Google Scholar]
- Tatu U., Helenius A. Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol. 1997 Feb 10;136(3):555–565. doi: 10.1083/jcb.136.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tytgat K. M., Büller H. A., Opdam F. J., Kim Y. S., Einerhand A. W., Dekker J. Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin. Gastroenterology. 1994 Nov;107(5):1352–1363. doi: 10.1016/0016-5085(94)90537-1. [DOI] [PubMed] [Google Scholar]
- Van Klinken B. J., Dekker J., Büller H. A., Einerhand A. W. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol. 1995 Nov;269(5 Pt 1):G613–G627. doi: 10.1152/ajpgi.1995.269.5.G613. [DOI] [PubMed] [Google Scholar]
- Van Leeuwen J. E., Kearse K. P. The related molecular chaperones calnexin and calreticulin differentially associate with nascent T cell antigen receptor proteins within the endoplasmic reticulum. J Biol Chem. 1996 Oct 11;271(41):25345–25349. doi: 10.1074/jbc.271.41.25345. [DOI] [PubMed] [Google Scholar]
- Vassilakos A., Cohen-Doyle M. F., Peterson P. A., Jackson M. R., Williams D. B. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 1996 Apr 1;15(7):1495–1506. [PMC free article] [PubMed] [Google Scholar]
- Vassilakos A., Michalak M., Lehrman M. A., Williams D. B. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry. 1998 Mar 10;37(10):3480–3490. doi: 10.1021/bi972465g. [DOI] [PubMed] [Google Scholar]
- Wagner D. D. Cell biology of von Willebrand factor. Annu Rev Cell Biol. 1990;6:217–246. doi: 10.1146/annurev.cb.06.110190.001245. [DOI] [PubMed] [Google Scholar]
- Ware F. E., Vassilakos A., Peterson P. A., Jackson M. R., Lehrman M. A., Williams D. B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem. 1995 Mar 3;270(9):4697–4704. doi: 10.1074/jbc.270.9.4697. [DOI] [PubMed] [Google Scholar]
- Zhang J. X., Braakman I., Matlack K. E., Helenius A. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol Biol Cell. 1997 Oct;8(10):1943–1954. doi: 10.1091/mbc.8.10.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Q., Salter R. D. Distinct patterns of folding and interactions with calnexin and calreticulin in human class I MHC proteins with altered N-glycosylation. J Immunol. 1998 Jan 15;160(2):831–837. [PubMed] [Google Scholar]
- van Klinken B. J., Einerhand A. W., Büller H. A., Dekker J. The oligomerization of a family of four genetically clustered human gastrointestinal mucins. Glycobiology. 1998 Jan;8(1):67–75. doi: 10.1093/glycob/8.1.67. [DOI] [PubMed] [Google Scholar]
- van Klinken B. J., Oussoren E., Weenink J. J., Strous G. J., Büller H. A., Dekker J., Einerhand A. W. The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj J. 1996 Oct;13(5):757–768. doi: 10.1007/BF00702340. [DOI] [PubMed] [Google Scholar]
- van de Bovenkamp J. H., Hau C. M., Strous G. J., Büller H. A., Dekker J., Einerhand A. W. Molecular cloning of human gastric mucin MUC5AC reveals conserved cysteine-rich D-domains and a putative leucine zipper motif. Biochem Biophys Res Commun. 1998 Apr 28;245(3):853–859. doi: 10.1006/bbrc.1998.8535. [DOI] [PubMed] [Google Scholar]