Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):601–611.

Analysis of DNase-I-hypersensitive sites at the 3' end of the cystic fibrosis transmembrane conductance regulator gene (CFTR).

H N Nuthall 1, D S Moulin 1, C Huxley 1, A Harris 1
PMCID: PMC1220397  PMID: 10417323

Abstract

The cystic fibrosis transmembrane conductance regulator gene (CFTR) exhibits a complex pattern of expression that shows temporal and spatial regulation, although the control mechanisms are not fully known. We have mapped DNase-I-hypersensitive sites (DHSs) flanking the CFTR gene with the aim of identifying potential regulatory elements. We previously characterized DHSs at -79.5 and -20.9 kb with respect to the CFTR translational start site and a regulatory element in the first intron of the gene at 185+10 kb. We have now mapped five DHSs lying 3' to the CFTR gene at 4574+5.4, +6.8, +7.0, +7.4 and +15.6 kb that show some degree of tissue specificity. The DHSs are seen in chromatin extracted from human primary epithelial cells and cell lines; the presence of the +15.6 kb site is tissue-specific in transgenic mice carrying a human CFTR yeast artificial chromosome. Further analysis of the 4574+15.6 kb DHS implicates the involvement of CCAAT-enhancer-binding protein (C/EBP), cAMP-response-element-binding protein (CREB)/activating transcription factor (ATF) and activator protein 1 (AP-1) family transcription factors at this regulatory element.

Full Text

The Full Text of this article is available as a PDF (374.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand R., Ogilvie D. J., Butler R., Riley J. H., Finniear R. S., Powell S. J., Smith J. C., Markham A. F. A yeast artificial chromosome contig encompassing the cystic fibrosis locus. Genomics. 1991 Jan;9(1):124–130. doi: 10.1016/0888-7543(91)90229-8. [DOI] [PubMed] [Google Scholar]
  2. Chalkley G., Harris A. Lymphocyte mRNA as a resource for detection of mutations and polymorphisms in the CF gene. J Med Genet. 1991 Nov;28(11):777–780. doi: 10.1136/jmg.28.11.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Chou J. L., Rozmahel R., Tsui L. C. Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1991 Dec 25;266(36):24471–24476. [PubMed] [Google Scholar]
  5. Coleman L., Harris A. Immortalization of male genital duct epithelium: an assay system for the cystic fibrosis gene. J Cell Sci. 1991 Jan;98(Pt 1):85–89. doi: 10.1242/jcs.98.1.85. [DOI] [PubMed] [Google Scholar]
  6. Crawford I., Maloney P. C., Zeitlin P. L., Guggino W. B., Hyde S. C., Turley H., Gatter K. C., Harris A., Higgins C. F. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9262–9266. doi: 10.1073/pnas.88.20.9262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denamur E., Chehab F. F. Analysis of the mouse and rat CFTR promoter regions. Hum Mol Genet. 1994 Jul;3(7):1089–1094. doi: 10.1093/hmg/3.7.1089. [DOI] [PubMed] [Google Scholar]
  8. Denning G. M., Ostedgaard L. S., Cheng S. H., Smith A. E., Welsh M. J. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J Clin Invest. 1992 Jan;89(1):339–349. doi: 10.1172/JCI115582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dixméras I., Lapouméroulie C., Tallec L. P., Bens M., Elion J., Vandewalle A., Denamur E. CFTR regions containing duodenum specific DNase I hypersensitive sites drive expression in intestinal crypt cells but not in fibroblasts. Biochem Biophys Res Commun. 1998 Sep 18;250(2):328–334. doi: 10.1006/bbrc.1998.9292. [DOI] [PubMed] [Google Scholar]
  10. Engelhardt J. F., Zepeda M., Cohn J. A., Yankaskas J. R., Wilson J. M. Expression of the cystic fibrosis gene in adult human lung. J Clin Invest. 1994 Feb;93(2):737–749. doi: 10.1172/JCI117028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fogh J., Wright W. C., Loveless J. D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst. 1977 Feb;58(2):209–214. doi: 10.1093/jnci/58.2.209. [DOI] [PubMed] [Google Scholar]
  12. Foulkes A. G., Harris A. Localization of expression of the cystic fibrosis gene in human pancreatic development. Pancreas. 1993 Jan;8(1):3–6. doi: 10.1097/00006676-199301000-00003. [DOI] [PubMed] [Google Scholar]
  13. Harris A., Chalkley G., Goodman S., Coleman L. Expression of the cystic fibrosis gene in human development. Development. 1991 Sep;113(1):305–310. doi: 10.1242/dev.113.1.305. [DOI] [PubMed] [Google Scholar]
  14. Harris A., Coleman L. Ductal epithelial cells cultured from human foetal epididymis and vas deferens: relevance to sterility in cystic fibrosis. J Cell Sci. 1989 Apr;92(Pt 4):687–690. doi: 10.1242/jcs.92.4.687. [DOI] [PubMed] [Google Scholar]
  15. Higgs D. R., Wood W. G., Jarman A. P., Sharpe J., Lida J., Pretorius I. M., Ayyub H. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev. 1990 Sep;4(9):1588–1601. doi: 10.1101/gad.4.9.1588. [DOI] [PubMed] [Google Scholar]
  16. Hollingsworth M. A., Closken C., Harris A., McDonald C. D., Pahwa G. S., Maher L. J., 3rd A nuclear factor that binds purine-rich, single-stranded oligonucleotides derived from S1-sensitive elements upstream of the CFTR gene and the MUC1 gene. Nucleic Acids Res. 1994 Apr 11;22(7):1138–1146. doi: 10.1093/nar/22.7.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huet C., Sahuquillo-Merino C., Coudrier E., Louvard D. Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J Cell Biol. 1987 Jul;105(1):345–357. doi: 10.1083/jcb.105.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kartner N., Augustinas O., Jensen T. J., Naismith A. L., Riordan J. R. Mislocalization of delta F508 CFTR in cystic fibrosis sweat gland. Nat Genet. 1992 Aug;1(5):321–327. doi: 10.1038/ng0892-321. [DOI] [PubMed] [Google Scholar]
  19. Koh J., Sferra T. J., Collins F. S. Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J Biol Chem. 1993 Jul 25;268(21):15912–15921. [PubMed] [Google Scholar]
  20. Lieber M., Mazzetta J., Nelson-Rees W., Kaplan M., Todaro G. Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer. 1975 May 15;15(5):741–747. doi: 10.1002/ijc.2910150505. [DOI] [PubMed] [Google Scholar]
  21. Manson A. L., Trezise A. E., MacVinish L. J., Kasschau K. D., Birchall N., Episkopou V., Vassaux G., Evans M. J., Colledge W. H., Cuthbert A. W. Complementation of null CF mice with a human CFTR YAC transgene. EMBO J. 1997 Jul 16;16(14):4238–4249. doi: 10.1093/emboj/16.14.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matthews R. P., McKnight G. S. Characterization of the cAMP response element of the cystic fibrosis transmembrane conductance regulator gene promoter. J Biol Chem. 1996 Dec 13;271(50):31869–31877. doi: 10.1074/jbc.271.50.31869. [DOI] [PubMed] [Google Scholar]
  23. Moulin D. S., Manson A. L., Nuthall H. N., Smith D. J., Huxley C., Harris A. In vivo analysis of DNase I hypersensitive sites in the human CFTR gene. Mol Med. 1999 Apr;5(4):211–223. [PMC free article] [PubMed] [Google Scholar]
  24. Nizetic D., Monard S., Young B., Cotter F., Zehetner G., Lehrach H. Construction of cosmid libraries from flow-sorted human chromosomes 1, 6, 7, 11, 13, and 18 for reference library resources. Mamm Genome. 1994 Dec;5(12):801–802. doi: 10.1007/BF00292017. [DOI] [PubMed] [Google Scholar]
  25. Pittman N., Shue G., LeLeiko N. S., Walsh M. J. Transcription of cystic fibrosis transmembrane conductance regulator requires a CCAAT-like element for both basal and cAMP-mediated regulation. J Biol Chem. 1995 Dec 1;270(48):28848–28857. doi: 10.1074/jbc.270.48.28848. [DOI] [PubMed] [Google Scholar]
  26. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D., Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989 Sep 8;245(4922):1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  27. Smith A. N., Barth M. L., McDowell T. L., Moulin D. S., Nuthall H. N., Hollingsworth M. A., Harris A. A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1996 Apr 26;271(17):9947–9954. doi: 10.1074/jbc.271.17.9947. [DOI] [PubMed] [Google Scholar]
  28. Smith A. N., Wardle C. J., Harris A. Characterization of DNASE I hypersensitive sites in the 120kb 5' to the CFTR gene. Biochem Biophys Res Commun. 1995 Jun 6;211(1):274–281. doi: 10.1006/bbrc.1995.1807. [DOI] [PubMed] [Google Scholar]
  29. Soule H. D., Vazguez J., Long A., Albert S., Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973 Nov;51(5):1409–1416. doi: 10.1093/jnci/51.5.1409. [DOI] [PubMed] [Google Scholar]
  30. Trapnell B. C., Zeitlin P. L., Chu C. S., Yoshimura K., Nakamura H., Guggino W. B., Bargon J., Banks T. C., Dalemans W., Pavirani A. Down-regulation of cystic fibrosis gene mRNA transcript levels and induction of the cystic fibrosis chloride secretory phenotype in epithelial cells by phorbol ester. J Biol Chem. 1991 Jun 5;266(16):10319–10323. [PubMed] [Google Scholar]
  31. Trezise A. E., Buchwald M. In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature. 1991 Oct 3;353(6343):434–437. doi: 10.1038/353434a0. [DOI] [PubMed] [Google Scholar]
  32. Trezise A. E., Chambers J. A., Wardle C. J., Gould S., Harris A. Expression of the cystic fibrosis gene in human foetal tissues. Hum Mol Genet. 1993 Mar;2(3):213–218. doi: 10.1093/hmg/2.3.213. [DOI] [PubMed] [Google Scholar]
  33. Trezise A. E., Linder C. C., Grieger D., Thompson E. W., Meunier H., Griswold M. D., Buchwald M. CFTR expression is regulated during both the cycle of the seminiferous epithelium and the oestrous cycle of rodents. Nat Genet. 1993 Feb;3(2):157–164. doi: 10.1038/ng0293-157. [DOI] [PubMed] [Google Scholar]
  34. Vassaux G., Manson A. L., Huxley C. Copy number-dependent expression of a YAC-cloned human CFTR gene in a human epithelial cell line. Gene Ther. 1997 Jun;4(6):618–623. doi: 10.1038/sj.gt.3300442. [DOI] [PubMed] [Google Scholar]
  35. Vuillaumier S., Dixmeras I., Messaï H., Lapouméroulie C., Lallemand D., Gekas J., Chehab F. F., Perret C., Elion J., Denamur E. Cross-species characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene reveals multiple levels of regulation. Biochem J. 1997 Nov 1;327(Pt 3):651–662. doi: 10.1042/bj3270651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vyas P., Vickers M. A., Simmons D. L., Ayyub H., Craddock C. F., Higgs D. R. Cis-acting sequences regulating expression of the human alpha-globin cluster lie within constitutively open chromatin. Cell. 1992 May 29;69(5):781–793. doi: 10.1016/0092-8674(92)90290-s. [DOI] [PubMed] [Google Scholar]
  37. Yoshimura K., Nakamura H., Trapnell B. C., Dalemans W., Pavirani A., Lecocq J. P., Crystal R. G. The cystic fibrosis gene has a "housekeeping"-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem. 1991 May 15;266(14):9140–9144. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES