Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):613–620.

Oligomeric self-association of basic fibroblast growth factor in the absence of heparin-like glycosaminoglycans.

J C Davis 1, G Venkataraman 1, Z Shriver 1, P A Raj 1, R Sasisekharan 1
PMCID: PMC1220398  PMID: 10417324

Abstract

Basic fibroblast growth factor (FGF-2) represents a class of heparin-binding growth factors that are stored in the extracellular matrix attached to heparin-like glycosaminoglycans (HLGAGs). It has been proposed that cell surface HLGAGs have a central role in the biological activity of FGF-2, presumably by inducing dimers or oligomers of FGF-2 and leading to the dimerization or oligomerization of FGF receptor and hence signal transduction. We have previously proposed that FGF-2 possesses a natural tendency to self-associate to form FGF-2 dimers and oligomers; HLGAGs would enhance FGF-2 self-association. Here, through a combination of spectroscopic, chemical cross-linking and spectrometric techniques, we provide direct evidence for the self-association of FGF-2 in the absence of HLGAGs, defying the notion that HLGAGs induce FGF-2 oligomerization. Further, the addition of HLGAGs seems to enhance significantly the FGF-2 oligomerization process without affecting the relative percentages of FGF-2 dimers, trimers or oligomers. FGF-2 self-association is consistent with FGF-2's possessing biological activity both in the presence and in the absence of HLGAGs; this leads us to propose that FGF-2 self-association enables FGF-2 to signal both in the presence and in the absence of HLGAGs.

Full Text

The Full Text of this article is available as a PDF (160.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Holst P., Narhi L. O., Philo J. S., Wen J., Prestrelski S. J., Zhu X., Rees D. C., Fox G. M. The importance of Arg40 and 45 in the mitogenic activity and structural stability of basic fibroblast growth factor: effects of acidic amino acid substitutions. J Protein Chem. 1995 Jul;14(5):263–274. doi: 10.1007/BF01886783. [DOI] [PubMed] [Google Scholar]
  2. Basilico C., Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–165. doi: 10.1016/s0065-230x(08)60305-x. [DOI] [PubMed] [Google Scholar]
  3. Bellot F., Crumley G., Kaplow J. M., Schlessinger J., Jaye M., Dionne C. A. Ligand-induced transphosphorylation between different FGF receptors. EMBO J. 1991 Oct;10(10):2849–2854. doi: 10.1002/j.1460-2075.1991.tb07834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernfield M., Kokenyesi R., Kato M., Hinkes M. T., Spring J., Gallo R. L., Lose E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393. doi: 10.1146/annurev.cb.08.110192.002053. [DOI] [PubMed] [Google Scholar]
  5. Epand R. M., Gawish A., Iqbal M., Gupta K. B., Chen C. H., Segrest J. P., Anantharamaiah G. M. Studies of synthetic peptide analogs of the amphipathic helix. Effect of charge distribution, hydrophobicity, and secondary structure on lipid association and lecithin:cholesterol acyltransferase activation. J Biol Chem. 1987 Jul 5;262(19):9389–9396. [PubMed] [Google Scholar]
  6. Fannon M., Nugent M. A. Basic fibroblast growth factor binds its receptors, is internalized, and stimulates DNA synthesis in Balb/c3T3 cells in the absence of heparan sulfate. J Biol Chem. 1996 Jul 26;271(30):17949–17956. doi: 10.1074/jbc.271.30.17949. [DOI] [PubMed] [Google Scholar]
  7. Folkman J., Klagsbrun M., Sasse J., Wadzinski M., Ingber D., Vlodavsky I. A heparin-binding angiogenic protein--basic fibroblast growth factor--is stored within basement membrane. Am J Pathol. 1988 Feb;130(2):393–400. [PMC free article] [PubMed] [Google Scholar]
  8. Friesel R. E., Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 1995 Jul;9(10):919–925. doi: 10.1096/fasebj.9.10.7542215. [DOI] [PubMed] [Google Scholar]
  9. Handler C. G., Eisenberg R. J., Cohen G. H. Oligomeric structure of glycoproteins in herpes simplex virus type 1. J Virol. 1996 Sep;70(9):6067–6070. doi: 10.1128/jvi.70.9.6067-6070.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herr A. B., Ornitz D. M., Sasisekharan R., Venkataraman G., Waksman G. Heparin-induced self-association of fibroblast growth factor-2. Evidence for two oligomerization processes. J Biol Chem. 1997 Jun 27;272(26):16382–16389. doi: 10.1074/jbc.272.26.16382. [DOI] [PubMed] [Google Scholar]
  11. Kahn P. C. The interpretation of near-ultraviolet circular dichroism. Methods Enzymol. 1979;61:339–378. doi: 10.1016/0076-6879(79)61018-2. [DOI] [PubMed] [Google Scholar]
  12. Klagsbrun M., Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell. 1991 Oct 18;67(2):229–231. doi: 10.1016/0092-8674(91)90173-v. [DOI] [PubMed] [Google Scholar]
  13. Lakey J. H., Raggett E. M. Measuring protein-protein interactions. Curr Opin Struct Biol. 1998 Feb;8(1):119–123. doi: 10.1016/s0959-440x(98)80019-5. [DOI] [PubMed] [Google Scholar]
  14. Lindahl U., Lidholt K., Spillmann D., Kjellén L. More to "heparin" than anticoagulation. Thromb Res. 1994 Jul 1;75(1):1–32. doi: 10.1016/0049-3848(94)90136-8. [DOI] [PubMed] [Google Scholar]
  15. Mach H., Volkin D. B., Burke C. J., Middaugh C. R., Linhardt R. J., Fromm J. R., Loganathan D., Mattsson L. Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry. 1993 May 25;32(20):5480–5489. doi: 10.1021/bi00071a026. [DOI] [PubMed] [Google Scholar]
  16. Mascarelli F., Fuhrmann G., Courtois Y. aFGF binding to low and high affinity receptors induces both aFGF and aFGF receptors dimerization. Growth Factors. 1993;8(3):211–233. doi: 10.3109/08977199309011024. [DOI] [PubMed] [Google Scholar]
  17. Mason I. J. The ins and outs of fibroblast growth factors. Cell. 1994 Aug 26;78(4):547–552. doi: 10.1016/0092-8674(94)90520-7. [DOI] [PubMed] [Google Scholar]
  18. Moniatte M., van der Goot F. G., Buckley J. T., Pattus F., van Dorsselaer A. Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry. FEBS Lett. 1996 Apr 22;384(3):269–272. doi: 10.1016/0014-5793(96)00328-6. [DOI] [PubMed] [Google Scholar]
  19. Moy F. J., Safran M., Seddon A. P., Kitchen D., Böhlen P., Aviezer D., Yayon A., Powers R. Properly oriented heparin-decasaccharide-induced dimers are the biologically active form of basic fibroblast growth factor. Biochemistry. 1997 Apr 22;36(16):4782–4791. doi: 10.1021/bi9625455. [DOI] [PubMed] [Google Scholar]
  20. Moy F. J., Seddon A. P., Böhlen P., Powers R. High-resolution solution structure of basic fibroblast growth factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Biochemistry. 1996 Oct 22;35(42):13552–13561. doi: 10.1021/bi961260p. [DOI] [PubMed] [Google Scholar]
  21. Nugent M. A., Edelman E. R. Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperactivity. Biochemistry. 1992 Sep 22;31(37):8876–8883. doi: 10.1021/bi00152a026. [DOI] [PubMed] [Google Scholar]
  22. Ohman A., Davydov R., Backlund B. M., Langel U., Gräslund A. A study of melittin, motilin and galanin in reversed micellar environments, using circular dichroism spectroscopy. Biophys Chem. 1996 Mar 7;59(1-2):185–192. doi: 10.1016/0301-4622(95)00122-0. [DOI] [PubMed] [Google Scholar]
  23. Ornitz D. M., Yayon A., Flanagan J. G., Svahn C. M., Levi E., Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol. 1992 Jan;12(1):240–247. doi: 10.1128/mcb.12.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raj P. A., Balaram P. Conformational effects on peptide aggregation in organic solvents: spectroscopic studies of two chemotactic tripeptide analogs. Biopolymers. 1985 Jul;24(7):1131–1146. doi: 10.1002/bip.360240703. [DOI] [PubMed] [Google Scholar]
  25. Rapraeger A. C. The coordinated regulation of heparan sulfate, syndecans and cell behavior. Curr Opin Cell Biol. 1993 Oct;5(5):844–853. doi: 10.1016/0955-0674(93)90034-n. [DOI] [PubMed] [Google Scholar]
  26. Roghani M., Mansukhani A., Dell'Era P., Bellosta P., Basilico C., Rifkin D. B., Moscatelli D. Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J Biol Chem. 1994 Feb 11;269(6):3976–3984. [PubMed] [Google Scholar]
  27. Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]
  28. Schlessinger J., Lax I., Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell. 1995 Nov 3;83(3):357–360. doi: 10.1016/0092-8674(95)90112-4. [DOI] [PubMed] [Google Scholar]
  29. Shing Y., Folkman J., Sullivan R., Butterfield C., Murray J., Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science. 1984 Mar 23;223(4642):1296–1299. doi: 10.1126/science.6199844. [DOI] [PubMed] [Google Scholar]
  30. Spivak-Kroizman T., Lemmon M. A., Dikic I., Ladbury J. E., Pinchasi D., Huang J., Jaye M., Crumley G., Schlessinger J., Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell. 1994 Dec 16;79(6):1015–1024. doi: 10.1016/0092-8674(94)90032-9. [DOI] [PubMed] [Google Scholar]
  31. Tzahar E., Pinkas-Kramarski R., Moyer J. D., Klapper L. N., Alroy I., Levkowitz G., Shelly M., Henis S., Eisenstein M., Ratzkin B. J. Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J. 1997 Aug 15;16(16):4938–4950. doi: 10.1093/emboj/16.16.4938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ueno H., Gunn M., Dell K., Tseng A., Jr, Williams L. A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J Biol Chem. 1992 Jan 25;267(3):1470–1476. [PubMed] [Google Scholar]
  33. Venkataraman G., Sasisekharan V., Herr A. B., Ornitz D. M., Waksman G., Cooney C. L., Langer R., Sasisekharan R. Preferential self-association of basic fibroblast growth factor is stabilized by heparin during receptor dimerization and activation. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):845–850. doi: 10.1073/pnas.93.2.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Venkataraman G., Shriver Z., Davis J. C., Sasisekharan R. Fibroblast growth factors 1 and 2 are distinct in oligomerization in the presence of heparin-like glycosaminoglycans. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1892–1897. doi: 10.1073/pnas.96.5.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wagner S., Green M. R. HTLV-I Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization. Science. 1993 Oct 15;262(5132):395–399. doi: 10.1126/science.8211160. [DOI] [PubMed] [Google Scholar]
  36. Walker A., Turnbull J. E., Gallagher J. T. Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J Biol Chem. 1994 Jan 14;269(2):931–935. [PubMed] [Google Scholar]
  37. Wolf B. B., Gonias S. L. Neurotrophin binding to human alpha 2-macroglobulin under apparent equilibrium conditions. Biochemistry. 1994 Sep 20;33(37):11270–11277. doi: 10.1021/bi00203a024. [DOI] [PubMed] [Google Scholar]
  38. Wu H., Kwong P. D., Hendrickson W. A. Dimeric association and segmental variability in the structure of human CD4. Nature. 1997 May 29;387(6632):527–530. doi: 10.1038/387527a0. [DOI] [PubMed] [Google Scholar]
  39. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES