Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):629–637.

Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units.

A S Couto 1, E A Kimura 1, V J Peres 1, M L Uhrig 1, A M Katzin 1
PMCID: PMC1220400  PMID: 10417326

Abstract

N-glycosylation of proteins is required for the intra-erythrocytic schizogony of Plasmodium falciparum. In eukaryotic cells, this process involves the transfer of oligosaccharides from a dolichyl pyrophosphate derivative to asparagine residues. We have identified dolichol, dolichyl phosphate and dolichyl pyrophosphate species of 11 and 12 isoprenoid residues by metabolic labelling with [(3)H]farnesyl pyrophosphate, [(3)H]geranylgeranyl pyrophosphate and [(14)C]acetate in the different intra-erythrocytic stages of P. falciparum. This is the first demonstration of short-chain dolichols in the phylum Apicomplexa. The results demonstrate the presence of an active isoprenoid pathway in the intra-erythrocytic stages of P. falciparum. Parasites treated with mevastatin, a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, show depressed biosynthesis of dolichol, dolichyl phosphate and isoprenoid pyrophosphate. This effect is observed in all intra-erythrocytic stages of the parasite life cycle, but is most pronounced in the ring stage. N-linked glycosylation of proteins was inhibited in the ring and young-trophozoite stages after mevastatin treatment of parasite cultures. Therefore the isoprenoid pathway may represent a different approach to the development of new anti-malarial drugs.

Full Text

The Full Text of this article is available as a PDF (240.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair W. L., Jr, Cafmeyer N., Keller R. K. Solubilization and characterization of the long chain prenyltransferase involved in dolichyl phosphate biosynthesis. J Biol Chem. 1984 Apr 10;259(7):4441–4446. [PubMed] [Google Scholar]
  2. Adair W. L., Keller R. K. Isolation and assay of dolichol and dolichyl phosphate. Methods Enzymol. 1985;111:201–215. doi: 10.1016/s0076-6879(85)11010-4. [DOI] [PubMed] [Google Scholar]
  3. Andersson M., Appelkvist E. L., Kristensson K., Dallner G. Distribution of dolichol and dolichyl phosphate in human brain. J Neurochem. 1987 Sep;49(3):685–691. doi: 10.1111/j.1471-4159.1987.tb00948.x. [DOI] [PubMed] [Google Scholar]
  4. Appelkvist E. L., Edlund C., Löw P., Schedin S., Kalén A., Dallner G. Effects of inhibitors of hydroxymethylglutaryl coenzyme A reductase on coenzyme Q and dolichol biosynthesis. Clin Investig. 1993;71(8 Suppl):S97–102. doi: 10.1007/BF00226848. [DOI] [PubMed] [Google Scholar]
  5. Behrens N. H., Tábora E. Dolichol intermediates in the glycosylation of proteins. Methods Enzymol. 1978;50:402–435. doi: 10.1016/0076-6879(78)50047-5. [DOI] [PubMed] [Google Scholar]
  6. Braun-Breton C., Jendoubi M., Brunet E., Perrin L., Scaife J., Pereira da Silva L. In vivo time course of synthesis and processing of major schizont membrane polypeptides in Plasmodium falciparum. Mol Biochem Parasitol. 1986 Jul;20(1):33–43. doi: 10.1016/0166-6851(86)90140-4. [DOI] [PubMed] [Google Scholar]
  7. Carlberg M., Dricu A., Blegen H., Wang M., Hjertman M., Zickert P., Hög A., Larsson O. Mevalonic acid is limiting for N-linked glycosylation and translocation of the insulin-like growth factor-1 receptor to the cell surface. Evidence for a new link between 3-hydroxy-3-methylglutaryl-coenzyme a reductase and cell growth. J Biol Chem. 1996 Jul 19;271(29):17453–17462. doi: 10.1074/jbc.271.29.17453. [DOI] [PubMed] [Google Scholar]
  8. Chakrabarti D., Azam T., DelVecchio C., Qiu L., Park Y. I., Allen C. M. Protein prenyl transferase activities of Plasmodium falciparum. Mol Biochem Parasitol. 1998 Aug 1;94(2):175–184. doi: 10.1016/s0166-6851(98)00065-6. [DOI] [PubMed] [Google Scholar]
  9. Chen G. Z., Bennett J. L. Characterization of mevalonate-labeled lipids isolated from parasite proteins in Schistosoma mansoni. Mol Biochem Parasitol. 1993 Jun;59(2):287–292. doi: 10.1016/0166-6851(93)90226-n. [DOI] [PubMed] [Google Scholar]
  10. Chojnacki T., Dallner G. The biological role of dolichol. Biochem J. 1988 Apr 1;251(1):1–9. doi: 10.1042/bj2510001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coppens I., Courtoy P. J. The mevalonate pathway in parasitic protozoa and helminths. Exp Parasitol. 1996 Jan;82(1):76–85. doi: 10.1006/expr.1996.0011. [DOI] [PubMed] [Google Scholar]
  12. Dieckmann-Schuppert A., Bender S., Holder A. A., Haldar K., Schwarz R. T. Labeling and initial characterization of polar lipids in cultures of Plasmodium falciparum. Parasitol Res. 1992;78(5):416–422. doi: 10.1007/BF00931698. [DOI] [PubMed] [Google Scholar]
  13. Dieckmann-Schuppert A., Bender S., Odenthal-Schnittler M., Bause E., Schwarz R. T. Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. Eur J Biochem. 1992 Apr 15;205(2):815–825. doi: 10.1111/j.1432-1033.1992.tb16846.x. [DOI] [PubMed] [Google Scholar]
  14. Ellis J. E. Coenzyme Q homologs in parasitic protozoa as targets for chemotherapeutic attack. Parasitol Today. 1994 Aug;10(8):296–301. doi: 10.1016/0169-4758(94)90079-5. [DOI] [PubMed] [Google Scholar]
  15. Field H., Blench I., Croft S., Field M. C. Characterisation of protein isoprenylation in procyclic form Trypanosoma brucei. Mol Biochem Parasitol. 1996 Nov 12;82(1):67–80. doi: 10.1016/0166-6851(96)02723-5. [DOI] [PubMed] [Google Scholar]
  16. Fujii H., Koyama T., Ogura K. Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim Biophys Acta. 1982 Sep 14;712(3):716–718. [PubMed] [Google Scholar]
  17. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  18. Gowda D. C., Gupta P., Davidson E. A. Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum. J Biol Chem. 1997 Mar 7;272(10):6428–6439. doi: 10.1074/jbc.272.10.6428. [DOI] [PubMed] [Google Scholar]
  19. Grande N., Precigout E., Ancelin M. L., Moubri K., Carcy B., Lemesre J. L., Vial H., Gorenflot A. Continuous in vitro culture of Babesia divergens in a serum-free medium. Parasitology. 1997 Jul;115(Pt 1):81–89. doi: 10.1017/s0031182097008937. [DOI] [PubMed] [Google Scholar]
  20. Grellier P., Rigomier D., Clavey V., Fruchart J. C., Schrevel J. Lipid traffic between high density lipoproteins and Plasmodium falciparum-infected red blood cells. J Cell Biol. 1991 Jan;112(2):267–277. doi: 10.1083/jcb.112.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grellier P., Valentin A., Millerioux V., Schrevel J., Rigomier D. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors lovastatin and simvastatin inhibit in vitro development of Plasmodium falciparum and Babesia divergens in human erythrocytes. Antimicrob Agents Chemother. 1994 May;38(5):1144–1148. doi: 10.1128/aac.38.5.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoessli D. C., Davidson E. A., Schwarz R. T., Nasir-ud-Din Glycobiology of Plasmodium falciparum: an emerging area of research. Glycoconj J. 1996 Feb;13(1):1–3. doi: 10.1007/BF01049673. [DOI] [PubMed] [Google Scholar]
  23. Katzin A. M., Kimura E. S., Alexandre C. O., Ramos A. M. Detection of antigens in urine of patients with acute falciparum and vivax malaria infections. Am J Trop Med Hyg. 1991 Oct;45(4):453–462. doi: 10.4269/ajtmh.1991.45.453. [DOI] [PubMed] [Google Scholar]
  24. Kimura E. A., Couto A. S., Peres V. J., Casal O. L., Katzin A. M. N-linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum. J Biol Chem. 1996 Jun 14;271(24):14452–14461. doi: 10.1074/jbc.271.24.14452. [DOI] [PubMed] [Google Scholar]
  25. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Luján H. D., Mowatt M. R., Chen G. Z., Nash T. E. Isoprenylation of proteins in the protozoan Giardia lamblia. Mol Biochem Parasitol. 1995 Jun;72(1-2):121–127. doi: 10.1016/0166-6851(94)00070-4. [DOI] [PubMed] [Google Scholar]
  28. Löw P., Dallner G., Mayor S., Cohen S., Chait B. T., Menon A. K. The mevalonate pathway in the bloodstream form of Trypanosoma brucei. Identification of dolichols containing 11 and 12 isoprene residues. J Biol Chem. 1991 Oct 15;266(29):19250–19257. [PubMed] [Google Scholar]
  29. Maley F., Trimble R. B., Tarentino A. L., Plummer T. H., Jr Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem. 1989 Aug 1;180(2):195–204. doi: 10.1016/0003-2697(89)90115-2. [DOI] [PubMed] [Google Scholar]
  30. Maltese W. A., Sheridan K. M. Differentiation of neuroblastoma cells induced by an inhibitor of mevalonate synthesis: relation of neurite outgrowth and acetylcholinesterase activity to changes in cell proliferation and blocked isoprenoid synthesis. J Cell Physiol. 1985 Dec;125(3):540–558. doi: 10.1002/jcp.1041250326. [DOI] [PubMed] [Google Scholar]
  31. Mbaya B., Rigomier D., Edorh G. G., Karst F., Schrevel J. Isoprenoid metabolism in Plasmodium falciparum during the intraerythrocytic phase of malaria. Biochem Biophys Res Commun. 1990 Dec 31;173(3):849–854. doi: 10.1016/s0006-291x(05)80864-2. [DOI] [PubMed] [Google Scholar]
  32. Mitchell D. A., Deschenes R. J. Characterization of protein prenylation in Saccharomyces cerevisiae. Methods Enzymol. 1995;250:68–78. doi: 10.1016/0076-6879(95)50063-4. [DOI] [PubMed] [Google Scholar]
  33. Ofulla A. O., Orago A. S., Githure J. I., Burans J. P., Aleman G. M., Johnson A. J., Martin S. K. Determination of fifty percent inhibitory concentrations (IC50) of antimalarial drugs against Plasmodium falciparum parasites in a serum-free medium. Am J Trop Med Hyg. 1994 Aug;51(2):214–218. doi: 10.4269/ajtmh.1994.51.214. [DOI] [PubMed] [Google Scholar]
  34. Parker R. A., Clark R. W., Sit S. Y., Lanier T. L., Grosso R. A., Wright J. J. Selective inhibition of cholesterol synthesis in liver versus extrahepatic tissues by HMG-CoA reductase inhibitors. J Lipid Res. 1990 Jul;31(7):1271–1282. [PubMed] [Google Scholar]
  35. Parodi A. J., Quesada-Allue L. A. Protein glycosylation in Trypanosoma cruzi. I. Characterization of dolichol-bound monosaccharides and oligosaccharides synthesized "in vivo". J Biol Chem. 1982 Jul 10;257(13):7637–7640. [PubMed] [Google Scholar]
  36. Pasvol G., Wilson R. J., Smalley M. E., Brown J. Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. Ann Trop Med Parasitol. 1978 Feb;72(1):87–88. doi: 10.1080/00034983.1978.11719283. [DOI] [PubMed] [Google Scholar]
  37. Plummer T. H., Jr, Tarentino A. L. Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology. 1991 Jun;1(3):257–263. doi: 10.1093/glycob/1.3.257. [DOI] [PubMed] [Google Scholar]
  38. Quesada-Allue L. A., Parodi A. J. Novel mannose carrier in the trypanosomatid Crithidia fasciculata behaving as a short alpha-saturated polyprenyl phosphate. Biochem J. 1983 Apr 15;212(1):123–128. doi: 10.1042/bj2120123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schwarz R. T., Datema R. The lipid pathway of protein glycosylation and its inhibitors: the biological significance of protein-bound carbohydrates. Adv Carbohydr Chem Biochem. 1982;40:287–379. doi: 10.1016/s0065-2318(08)60111-0. [DOI] [PubMed] [Google Scholar]
  40. Sinensky M., Lutz R. J. The prenylation of proteins. Bioessays. 1992 Jan;14(1):25–31. doi: 10.1002/bies.950140106. [DOI] [PubMed] [Google Scholar]
  41. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  42. Vandewaa E. A., Mills G., Chen G. Z., Foster L. A., Bennett J. L. Physiological role of HMG-CoA reductase in regulating egg production by Schistosoma mansoni. Am J Physiol. 1989 Sep;257(3 Pt 2):R618–R625. doi: 10.1152/ajpregu.1989.257.3.R618. [DOI] [PubMed] [Google Scholar]
  43. Varki A. Metabolic radiolabeling of glycoconjugates. Methods Enzymol. 1994;230:16–32. doi: 10.1016/0076-6879(94)30004-6. [DOI] [PubMed] [Google Scholar]
  44. Vial H. J., Ancelin M. L. Malarial lipids. An overview. Subcell Biochem. 1992;18:259–306. [PubMed] [Google Scholar]
  45. Vial H. J., Philippot J. R., Wallach D. F. A reevaluation of the status of cholesterol in erythrocytes infected by Plasmodium knowlesi and P. falciparum. Mol Biochem Parasitol. 1984 Sep;13(1):53–65. doi: 10.1016/0166-6851(84)90101-4. [DOI] [PubMed] [Google Scholar]
  46. Walter R. D. Plasmodium falciparum: inhibition of dolichol kinase by mefloquine. Exp Parasitol. 1986 Dec;62(3):356–361. doi: 10.1016/0014-4894(86)90042-1. [DOI] [PubMed] [Google Scholar]
  47. Yokoyama K., Lin Y., Stuart K. D., Gelb M. H. Prenylation of proteins in Trypanosoma brucei. Mol Biochem Parasitol. 1997 Jul;87(1):61–69. doi: 10.1016/s0166-6851(97)00043-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES