Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):647–653.

Specific inhibition of skeletal alpha-actin gene transcription by applied mechanical forces through integrins and actin.

A M Lew 1, M Glogauer 1, C A Mculloch 1
PMCID: PMC1220402  PMID: 10417328

Abstract

Skeletal alpha-actin (skA), a prominent fetal actin isoform that is re-expressed by adult cardiac myocytes after chronic overload in vivo, provides a model for studying cytoskeletal gene regulation by mechanical forces in vitro. We have determined the mechanisms by which perpendicular applied forces acting through integrins and the actin cytoskeleton regulate the expression of skA. Rat-2 fibroblasts were transiently transfected with plasmids containing 5'-regulatory regions of the skA gene fused to luciferase coding sequences. A constant, perpendicular force (0.2 pN/micrometer(2)) was applied by using a collagen-magnetic bead model; a 25% deformation was obtained on the dorsal cell surface. In this system, force is applied through focal adhesion integrins and strongly induces actin assembly [Glogauer, Arora, Yao, Sokholov, Ferrier and McCulloch (1997) J. Cell Sci. 110, 11-21]. skA promoter activity was inhibited by 68% in cells subjected to 4 h of applied force, whereas Rous sarcoma virus promoter activity was unaffected. In cells transiently transfected with a skA expression vector there was also a parallel 40% decrease in skA protein levels by force, as shown by Western blotting. In L8 cells, constitutive skA expression was decreased by more than 50%. Analyses of specific motifs in the skA promoter revealed that transcriptional enhancer factor 1 and Yin and Yang 1 sites, but not serum response factor and Sp1 sites, mediated inhibitory responses to force. In cells treated with cycloheximide the force-induced inhibition was abrogated, indicating a dependence on new protein synthesis. Inhibition of actin filament assembly with either cytochalasin D or Ca(2+)-depleted medium blocked the inhibitory effect induced by the applied force, suggesting that actin filaments are required for the regulation of skA promoter activity. Western blot analysis showed that p38 kinase, but not Jun N-terminal kinase or extracellular signal-regulated protein kinase 1/2, was activated by force; indeed, the p38 kinase inhibitor SB203580 relieved the force-induced inhibition of skA. We conclude that the force-induced inhibition of skA promoter activity requires an intact actin cytoskeleton and can be mapped to two different response elements. This inhibition might be mediated through the p38 kinase.

Full Text

The Full Text of this article is available as a PDF (189.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora P. D., Narani N., McCulloch C. A. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol. 1999 Mar;154(3):871–882. doi: 10.1016/s0002-9440(10)65334-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bershadsky A. D., Glück U., Denisenko O. N., Sklyarova T. V., Spector I., Ben-Ze'ev A. The state of actin assembly regulates actin and vinculin expression by a feedback loop. J Cell Sci. 1995 Mar;108(Pt 3):1183–1193. doi: 10.1242/jcs.108.3.1183. [DOI] [PubMed] [Google Scholar]
  3. Brand T., Sharma H. S., Schaper W. Expression of nuclear proto-oncogenes in isoproterenol-induced cardiac hypertrophy. J Mol Cell Cardiol. 1993 Nov;25(11):1325–1337. doi: 10.1006/jmcc.1993.1145. [DOI] [PubMed] [Google Scholar]
  4. Cooper J. A. The role of actin polymerization in cell motility. Annu Rev Physiol. 1991;53:585–605. doi: 10.1146/annurev.ph.53.030191.003101. [DOI] [PubMed] [Google Scholar]
  5. Cuenda A., Rouse J., Doza Y. N., Meier R., Cohen P., Gallagher T. F., Young P. R., Lee J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995 May 8;364(2):229–233. doi: 10.1016/0014-5793(95)00357-f. [DOI] [PubMed] [Google Scholar]
  6. Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
  7. Dérijard B., Hibi M., Wu I. H., Barrett T., Su B., Deng T., Karin M., Davis R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
  8. Dérijard B., Raingeaud J., Barrett T., Wu I. H., Han J., Ulevitch R. J., Davis R. J. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 1995 Feb 3;267(5198):682–685. doi: 10.1126/science.7839144. [DOI] [PubMed] [Google Scholar]
  9. Freshney N. W., Rawlinson L., Guesdon F., Jones E., Cowley S., Hsuan J., Saklatvala J. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell. 1994 Sep 23;78(6):1039–1049. doi: 10.1016/0092-8674(94)90278-x. [DOI] [PubMed] [Google Scholar]
  10. Galcheva-Gargova Z., Dérijard B., Wu I. H., Davis R. J. An osmosensing signal transduction pathway in mammalian cells. Science. 1994 Aug 5;265(5173):806–808. doi: 10.1126/science.8047888. [DOI] [PubMed] [Google Scholar]
  11. Garrels J. I., Gibson W. Identification and characterization of multiple forms of actin. Cell. 1976 Dec;9(4 Pt 2):793–805. doi: 10.1016/0092-8674(76)90142-2. [DOI] [PubMed] [Google Scholar]
  12. Glogauer M., Arora P., Yao G., Sokholov I., Ferrier J., McCulloch C. A. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci. 1997 Jan;110(Pt 1):11–21. doi: 10.1242/jcs.110.1.11. [DOI] [PubMed] [Google Scholar]
  13. Glogauer M., Ferrier J., McCulloch C. A. Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts. Am J Physiol. 1995 Nov;269(5 Pt 1):C1093–C1104. doi: 10.1152/ajpcell.1995.269.5.C1093. [DOI] [PubMed] [Google Scholar]
  14. Gupta S., Campbell D., Dérijard B., Davis R. J. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science. 1995 Jan 20;267(5196):389–393. doi: 10.1126/science.7824938. [DOI] [PubMed] [Google Scholar]
  15. Janmey P. A. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol. 1994;56:169–191. doi: 10.1146/annurev.ph.56.030194.001125. [DOI] [PubMed] [Google Scholar]
  16. Karns L. R., Kariya K., Simpson P. C. M-CAT, CArG, and Sp1 elements are required for alpha 1-adrenergic induction of the skeletal alpha-actin promoter during cardiac myocyte hypertrophy. Transcriptional enhancer factor-1 and protein kinase C as conserved transducers of the fetal program in cardiac growth. J Biol Chem. 1995 Jan 6;270(1):410–417. doi: 10.1074/jbc.270.1.410. [DOI] [PubMed] [Google Scholar]
  17. Kieffer J. D., Plopper G., Ingber D. E., Hartwig J. H., Kupper T. S. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro. Biochem Biophys Res Commun. 1995 Dec 14;217(2):466–474. doi: 10.1006/bbrc.1995.2799. [DOI] [PubMed] [Google Scholar]
  18. Komuro I., Katoh Y., Kaida T., Shibazaki Y., Kurabayashi M., Hoh E., Takaku F., Yazaki Y. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation. J Biol Chem. 1991 Jan 15;266(2):1265–1268. [PubMed] [Google Scholar]
  19. Komuro I., Kudo S., Yamazaki T., Zou Y., Shiojima I., Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 1996 Apr;10(5):631–636. doi: 10.1096/fasebj.10.5.8621062. [DOI] [PubMed] [Google Scholar]
  20. Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
  21. Li Y. S., Shyy J. Y., Li S., Lee J., Su B., Karin M., Chien S. The Ras-JNK pathway is involved in shear-induced gene expression. Mol Cell Biol. 1996 Nov;16(11):5947–5954. doi: 10.1128/mcb.16.11.5947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MacLellan W. R., Lee T. C., Schwartz R. J., Schneider M. D. Transforming growth factor-beta response elements of the skeletal alpha-actin gene. Combinatorial action of serum response factor, YY1, and the SV40 enhancer-binding protein, TEF-1. J Biol Chem. 1994 Jun 17;269(24):16754–16760. [PubMed] [Google Scholar]
  23. Maniotis A. J., Chen C. S., Ingber D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):849–854. doi: 10.1073/pnas.94.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Minden A., Lin A., Smeal T., Dérijard B., Cobb M., Davis R., Karin M. c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol. 1994 Oct;14(10):6683–6688. doi: 10.1128/mcb.14.10.6683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nelson C., Albert V. R., Elsholtz H. P., Lu L. I., Rosenfeld M. G. Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science. 1988 Mar 18;239(4846):1400–1405. doi: 10.1126/science.2831625. [DOI] [PubMed] [Google Scholar]
  26. Paradis P., MacLellan W. R., Belaguli N. S., Schwartz R. J., Schneider M. D. Serum response factor mediates AP-1-dependent induction of the skeletal alpha-actin promoter in ventricular myocytes. J Biol Chem. 1996 May 3;271(18):10827–10833. doi: 10.1074/jbc.271.18.10827. [DOI] [PubMed] [Google Scholar]
  27. Pender N., McCulloch C. A. Quantitation of actin polymerization in two human fibroblast sub-types responding to mechanical stretching. J Cell Sci. 1991 Sep;100(Pt 1):187–193. doi: 10.1242/jcs.100.1.187. [DOI] [PubMed] [Google Scholar]
  28. Raingeaud J., Gupta S., Rogers J. S., Dickens M., Han J., Ulevitch R. J., Davis R. J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995 Mar 31;270(13):7420–7426. doi: 10.1074/jbc.270.13.7420. [DOI] [PubMed] [Google Scholar]
  29. Reusch P., Wagdy H., Reusch R., Wilson E., Ives H. E. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ Res. 1996 Nov;79(5):1046–1053. doi: 10.1161/01.res.79.5.1046. [DOI] [PubMed] [Google Scholar]
  30. Rouse J., Cohen P., Trigon S., Morange M., Alonso-Llamazares A., Zamanillo D., Hunt T., Nebreda A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell. 1994 Sep 23;78(6):1027–1037. doi: 10.1016/0092-8674(94)90277-1. [DOI] [PubMed] [Google Scholar]
  31. Sadoshima J., Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 1997;59:551–571. doi: 10.1146/annurev.physiol.59.1.551. [DOI] [PubMed] [Google Scholar]
  32. Stossel T. P. From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem. 1989 Nov 5;264(31):18261–18264. [PubMed] [Google Scholar]
  33. Whitmarsh A. J., Shore P., Sharrocks A. D., Davis R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science. 1995 Jul 21;269(5222):403–407. doi: 10.1126/science.7618106. [DOI] [PubMed] [Google Scholar]
  34. Zervos A. S., Faccio L., Gatto J. P., Kyriakis J. M., Brent R. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10531–10534. doi: 10.1073/pnas.92.23.10531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES