Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):669–678. doi: 10.1042/0264-6021:3410669

The final step of pantothenate biosynthesis in higher plants: cloning and characterization of pantothenate synthetase from Lotus japonicus and Oryza sativum (rice).

U Genschel 1, C A Powell 1, C Abell 1, A G Smith 1
PMCID: PMC1220405  PMID: 10417331

Abstract

We have isolated a Lotus japonicus cDNA for pantothenate (vitamin B(5)) synthetase (PS) by functional complementation of an Escherichia coli panC mutant (AT1371). A rice (Oryza sativum) expressed sequence tag, identified by sequence similarity to PS, was also able to complement the E. coli auxotroph, as was an open reading frame from Saccharomyces cerevisiae (baker's yeast). The Lotus and rice cDNAs encode proteins of approx. 34 kDa, which are 65% similar at the amino acid level and do not appear to encode N-terminal extensions by comparison with PS sequences from other organisms. Furthermore, analysis of genomic sequence flanking the coding sequence for PS in Lotus suggests the original cDNA is full-length. The Lotus and rice PSs are therefore likely to be cytosolic. Southern analysis of Lotus genomic DNA indicates that there is a single gene for PS. Recombinant PS from Lotus, overexpressed in E. coli AT1371, is a dimer. The enzyme requires d-pantoate, beta-alanine and ATP for activity and has a higher affinity for pantoate (K(m) 45 microM) than for beta-alanine (K(m) 990 microM). Uncompetitive substrate inhibition becomes significant at pantoate concentrations above 1 mM. The enzyme displays optimal activity at about 0.5 mM pantoate (k(cat) 0.63 s(-1)) and at pH 7.8. Neither oxopantoate nor pantoyl-lactone can replace pantoate as substrate. Antibodies raised against recombinant PS detected a band of 34 kDa in Western blots of Lotus proteins from both roots and leaves. The implications of these findings for pantothenate biosynthesis in plants are discussed.

Full Text

The Full Text of this article is available as a PDF (312.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brown G. M., Williamson J. M. Biosynthesis of riboflavin, folic acid, thiamine, and pantothenic acid. Adv Enzymol Relat Areas Mol Biol. 1982;53:345–381. doi: 10.1002/9780470122983.ch9. [DOI] [PubMed] [Google Scholar]
  4. Budde R. J., Fang T. K., Randall D. D., Miernyk J. A. Acetyl-coenzyme a can regulate activity of the mitochondrial pyruvate dehydrogenase complex in situ. Plant Physiol. 1991 Jan;95(1):131–136. doi: 10.1104/pp.95.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavener D. R., Ray S. C. Eukaryotic start and stop translation sites. Nucleic Acids Res. 1991 Jun 25;19(12):3185–3192. doi: 10.1093/nar/19.12.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chow K. S., Singh D. P., Walker A. R., Smith A. G. Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins. Plant J. 1998 Aug;15(4):531–541. doi: 10.1046/j.1365-313x.1998.00235.x. [DOI] [PubMed] [Google Scholar]
  7. Cronan J. E., Jr, Littel K. J., Jackowski S. Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1982 Mar;149(3):916–922. doi: 10.1128/jb.149.3.916-922.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dugaiczyk A., Boyer H. W., Goodman H. M. Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. J Mol Biol. 1975 Jul 25;96(1):171–184. doi: 10.1016/0022-2836(75)90189-8. [DOI] [PubMed] [Google Scholar]
  9. Falk K. L., Guerra D. J. Coenzyme A biosynthesis in plants: partial purification and characterization of pantothenate kinase from spinach. Arch Biochem Biophys. 1993 Mar;301(2):424–430. doi: 10.1006/abbi.1993.1166. [DOI] [PubMed] [Google Scholar]
  10. Hebsgaard S. M., Korning P. G., Tolstrup N., Engelbrecht J., Rouzé P., Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996 Sep 1;24(17):3439–3452. doi: 10.1093/nar/24.17.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones C. E., Brook J. M., Buck D., Abell C., Smith A. G. Cloning and sequencing of the Escherichia coli panB gene, which encodes ketopantoate hydroxymethyltransferase, and overexpression of the enzyme. J Bacteriol. 1993 Apr;175(7):2125–2130. doi: 10.1128/jb.175.7.2125-2130.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacFerrin K. D., Terranova M. P., Schreiber S. L., Verdine G. L. Overproduction and dissection of proteins by the expression-cassette polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1937–1941. doi: 10.1073/pnas.87.5.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Merkel W. K., Nichols B. P. Characterization and sequence of the Escherichia coli panBCD gene cluster. FEMS Microbiol Lett. 1996 Oct 1;143(2-3):247–252. doi: 10.1111/j.1574-6968.1996.tb08488.x. [DOI] [PubMed] [Google Scholar]
  16. Miyatake K., Nakano Y., Kitaoka S. Pantothenate synthetase from Escherichia coli [D-pantoate: beta-alanine ligase (AMP-forming), EC 6.3.2.1]. Methods Enzymol. 1979;62:215–219. doi: 10.1016/0076-6879(79)62221-8. [DOI] [PubMed] [Google Scholar]
  17. PFLEIDERER G., KREILING A., WIELAND T. [On pantothenic acid synthetase from E. coli. I. Concentration with the aid of an optical test]. Biochem Z. 1960;333:302–307. [PubMed] [Google Scholar]
  18. Sharif A. L., Smith A. G., Abell C. Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. Eur J Biochem. 1989 Sep 15;184(2):353–359. doi: 10.1111/j.1432-1033.1989.tb15026.x. [DOI] [PubMed] [Google Scholar]
  19. von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES