Abstract
The mechanism of unidirectional transport of ornithine (i.e. in the absence of a counter-metabolite) has been investigated in proteoliposomes reconstituted with the ornithine carrier purified from rat liver mitochondria. The efflux of [(3)H]ornithine from proteoliposomes was stimulated by the addition of H(+) (but not of other cations) to the incubation medium. On keeping the pH in the compartment containing ornithine constant at 8.0, the flux of ornithine into or out of the proteoliposomes increased on decreasing the pH in the opposite compartment from 8.0 to 6.0. Ornithine influx was also stimulated when a higher H(+) concentration was generated inside the vesicles relative to the outside by the K(+)/H(+) exchanger nigericin in the presence of an outwardly directed K(+) gradient. A valinomycin-induced electrogenic flux of K(+) did not affect ornithine transport in the absence of a counter-metabolite. Furthermore, changes in fluorescence of the pH indicator pyranine, included inside the proteoliposomes, showed that the flux of ornithine is accompanied by translocation of H(+) in the opposite direction. It is concluded that the mitochondrial ornithine carrier catalyses an electroneutral exchange of ornithine(+) for H(+), in addition to the well-known 1:1 exchange of metabolites. Lysine(+), but not citrulline, can also be exchanged for H(+) by the ornithine carrier. The ornithine(+)/H(+) transport mode of the exchanger is an essential step in the catabolism of excess arginine.
Full Text
The Full Text of this article is available as a PDF (137.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson D. L., Diwan J. J. Uptake of ornithine by rat liver mitochondria. Biochemistry. 1981 Dec 8;20(25):7064–7068. doi: 10.1021/bi00528a002. [DOI] [PubMed] [Google Scholar]
- Bisaccia F., De Palma A., Palmieri F. Identification and purification of the aspartate/glutamate carrier from bovine heart mitochondria. Biochim Biophys Acta. 1992 May 21;1106(2):291–296. doi: 10.1016/0005-2736(92)90008-a. [DOI] [PubMed] [Google Scholar]
- Bisaccia F., De Palma A., Prezioso G., Palmieri F. Kinetic characterization of the reconstituted tricarboxylate carrier from rat liver mitochondria. Biochim Biophys Acta. 1990 Sep 19;1019(3):250–256. doi: 10.1016/0005-2728(90)90201-e. [DOI] [PubMed] [Google Scholar]
- Bisaccia F., Indiveri C., Palmieri F. Purification of reconstitutively active alpha-oxoglutarate carrier from pig heart mitochondria. Biochim Biophys Acta. 1985 Dec 16;810(3):362–369. doi: 10.1016/0005-2728(85)90222-1. [DOI] [PubMed] [Google Scholar]
- Bradford N. M., McGivan J. D. Evidence for the existence of an ornithine/citrulline antiporter in rat liver mitochondria. FEBS Lett. 1980 May 5;113(2):294–298. doi: 10.1016/0014-5793(80)80612-0. [DOI] [PubMed] [Google Scholar]
- Bryła J., Harris E. J. Accumulation of ornithine and citrulline in rat liver mitochondria in relation to citrulline formation. FEBS Lett. 1976 Dec 31;72(2):331–336. doi: 10.1016/0014-5793(76)80998-2. [DOI] [PubMed] [Google Scholar]
- Crabeel M., Soetens O., De Rijcke M., Pratiwi R., Pankiewicz R. The ARG11 gene of Saccharomyces cerevisiae encodes a mitochondrial integral membrane protein required for arginine biosynthesis. J Biol Chem. 1996 Oct 4;271(40):25011–25018. doi: 10.1074/jbc.271.40.25011. [DOI] [PubMed] [Google Scholar]
- Davis R. H. Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev. 1986 Sep;50(3):280–313. doi: 10.1128/mr.50.3.280-313.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis R. H., Weiss R. L. Novel mechanisms controlling arginine metabolism in Neurospora. Trends Biochem Sci. 1988 Mar;13(3):101–104. doi: 10.1016/0968-0004(88)90050-3. [DOI] [PubMed] [Google Scholar]
- Dulley J. R., Grieve P. A. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem. 1975 Mar;64(1):136–141. doi: 10.1016/0003-2697(75)90415-7. [DOI] [PubMed] [Google Scholar]
- Gamble J. G., Lehninger A. L. Transport of ornithine and citrulline across the mitochondrial membrane. J Biol Chem. 1973 Jan 25;248(2):610–618. [PubMed] [Google Scholar]
- Herzfeld A., Knox W. E. The properties, developmental formation, and estrogen induction of ornithine aminotransferase in rat tissues. J Biol Chem. 1968 Jun 25;243(12):3327–3332. [PubMed] [Google Scholar]
- Herzfeld A., Raper S. M. The heterogeneity of arginases in rat tissues. Biochem J. 1976 Feb 1;153(2):469–478. doi: 10.1042/bj1530469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hommes F. A., Kitchings L., Eller A. G. The uptake of ornithine and lysine by rat liver mitochondria. Biochem Med. 1983 Dec;30(3):313–321. doi: 10.1016/0006-2944(83)90022-4. [DOI] [PubMed] [Google Scholar]
- Indiveri C., Palmieri L., Palmieri F. Kinetic characterization of the reconstituted ornithine carrier from rat liver mitochondria. Biochim Biophys Acta. 1994 Dec 30;1188(3):293–301. doi: 10.1016/0005-2728(94)90048-5. [DOI] [PubMed] [Google Scholar]
- Indiveri C., Tonazzi A., Palmieri F. Characterization of the unidirectional transport of carnitine catalyzed by the reconstituted carnitine carrier from rat liver mitochondria. Biochim Biophys Acta. 1991 Oct 14;1069(1):110–116. doi: 10.1016/0005-2736(91)90110-t. [DOI] [PubMed] [Google Scholar]
- Indiveri C., Tonazzi A., Palmieri F. Identification and purification of the ornithine/citrulline carrier from rat liver mitochondria. Eur J Biochem. 1992 Jul 15;207(2):449–454. doi: 10.1111/j.1432-1033.1992.tb17070.x. [DOI] [PubMed] [Google Scholar]
- Indiveri C., Tonazzi A., Prezioso G., Palmieri F. Kinetic characterization of the reconstituted carnitine carrier from rat liver mitochondria. Biochim Biophys Acta. 1991 Jun 18;1065(2):231–238. doi: 10.1016/0005-2736(91)90235-z. [DOI] [PubMed] [Google Scholar]
- Indiveri C., Tonazzi A., Stipani I., Palmieri F. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation. Biochem J. 1997 Oct 15;327(Pt 2):349–355. doi: 10.1042/bj3270349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ip M. M., Chee P. Y., Swick R. W. Turnover of hepatic mitochondrial ornithine aminotransferase and cytochrome oxidase using (14C)carbonate as tracer. Biochim Biophys Acta. 1974 Jun 20;354(1):29–38. doi: 10.1016/0304-4165(74)90049-x. [DOI] [PubMed] [Google Scholar]
- Krämer R., Heberger C. Functional reconstitution of carrier proteins by removal of detergent with a hydrophobic ion exchange column. Biochim Biophys Acta. 1986 Dec 16;863(2):289–296. doi: 10.1016/0005-2736(86)90269-5. [DOI] [PubMed] [Google Scholar]
- Krämer R., Klingenberg M. Modulation of the reconstituted adenine nucleotide exchange by membrane potential. Biochemistry. 1980 Feb 5;19(3):556–560. doi: 10.1021/bi00544a025. [DOI] [PubMed] [Google Scholar]
- Krämer R., Klingenberg M. Reconstitution of adenine nucleotide transport from beef heart mitochondria. Biochemistry. 1979 Sep 18;18(19):4209–4215. doi: 10.1021/bi00586a027. [DOI] [PubMed] [Google Scholar]
- Kuan J., Saier M. H., Jr The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol. 1993;28(3):209–233. doi: 10.3109/10409239309086795. [DOI] [PubMed] [Google Scholar]
- Kuo F. C., Hwu W. L., Valle D., Darnell J. E., Jr Colocalization in pericentral hepatocytes in adult mice and similarity in developmental expression pattern of ornithine aminotransferase and glutamine synthetase mRNA. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9468–9472. doi: 10.1073/pnas.88.21.9468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaNoue K. F., Tischler M. E. Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter. J Biol Chem. 1974 Dec 10;249(23):7522–7528. [PubMed] [Google Scholar]
- Liu Q., Dunlap J. C. Isolation and analysis of the arg-13 gene of Neurospora crassa. Genetics. 1996 Jul;143(3):1163–1174. doi: 10.1093/genetics/143.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
- McGivan J. D., Bradford N. M., Beavis A. D. Factors influencing the activity of ornithine aminotransferase in isolated rat liver mitochondria. Biochem J. 1977 Jan 15;162(1):147–156. doi: 10.1042/bj1620147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PERAINO C., BLAKE R. L., PITOT H. C. STUDIES ON THE INDUCTION AND REPRESSION OF ENZYMES IN RAT LIVER. 3. INDUCTION OF ORNITHINE DELTA-TRANSAMINASE AND THREONINE DEHYDRASE BY ORAL INTUBATION OF FREE AMINO ACIDS. J Biol Chem. 1965 Jul;240:3039–3043. [PubMed] [Google Scholar]
- PERAINO C., PITOT H. C. STUDIES ON THE INDUCTION AND REPRESSION OF ENZYMES IN RAT LIVER. II. CARBOHYDRATE REPRESSION OF DIETARY AND HORMONAL INDUCTION OF THREONINE DEHYDRASE AND ORNITHINE DELTA-TRANSAMINASE. J Biol Chem. 1964 Dec;239:4308–4313. [PubMed] [Google Scholar]
- Palmieri F., Indiveri C., Bisaccia F., Iacobazzi V. Mitochondrial metabolite carrier proteins: purification, reconstitution, and transport studies. Methods Enzymol. 1995;260:349–369. doi: 10.1016/0076-6879(95)60150-3. [DOI] [PubMed] [Google Scholar]
- Palmieri F., Klingenberg M. Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol. 1979;56:279–301. doi: 10.1016/0076-6879(79)56029-7. [DOI] [PubMed] [Google Scholar]
- Palmieri F. Mitochondrial carrier proteins. FEBS Lett. 1994 Jun 6;346(1):48–54. doi: 10.1016/0014-5793(94)00329-7. [DOI] [PubMed] [Google Scholar]
- Palmieri F., Stipani I., Iacobazzi V. The transport of L-cysteinesulfinate in rat liver mitochondria. Biochim Biophys Acta. 1979 Aug 23;555(3):531–546. doi: 10.1016/0005-2736(79)90407-3. [DOI] [PubMed] [Google Scholar]
- Palmieri L., De Marco V., Iacobazzi V., Palmieri F., Runswick M. J., Walker J. E. Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis. FEBS Lett. 1997 Jun 30;410(2-3):447–451. doi: 10.1016/s0014-5793(97)00630-3. [DOI] [PubMed] [Google Scholar]
- Pfaff E., Klingenberg M. Adenine nucleotide translocation of mitochondria. 1. Specificity and control. Eur J Biochem. 1968 Oct 17;6(1):66–79. doi: 10.1111/j.1432-1033.1968.tb00420.x. [DOI] [PubMed] [Google Scholar]
- Soboll S., Scholz R. Control of energy metabolism by glucagon and adrenaline in perfused rat liver. FEBS Lett. 1986 Sep 1;205(1):109–112. doi: 10.1016/0014-5793(86)80875-4. [DOI] [PubMed] [Google Scholar]
- Volpe P., Sawamura R., Strecker H. J. Control of ornithin delta-transaminase in rat liver and kidney. J Biol Chem. 1969 Feb 25;244(4):719–726. [PubMed] [Google Scholar]
- Walker J. E., Runswick M. J. The mitochondrial transport protein superfamily. J Bioenerg Biomembr. 1993 Oct;25(5):435–446. doi: 10.1007/BF01108401. [DOI] [PubMed] [Google Scholar]
- Windmueller H. G., Spaeth A. E. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem. 1978 Jan 10;253(1):69–76. [PubMed] [Google Scholar]
- Wrigglesworth J. M., Cooper C. E., Sharpe M. A., Nicholls P. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients. Biochem J. 1990 Aug 15;270(1):109–118. doi: 10.1042/bj2700109. [DOI] [PMC free article] [PubMed] [Google Scholar]
