Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):713–723.

Identification and characterization of an intracellular protein complex that binds fibroblast growth factor-2 in bovine brain.

E Chevet 1, G Lemaître 1, K Cailleret 1, S Dahan 1, J J Bergeron 1, M D Katinka 1
PMCID: PMC1220410  PMID: 10417336

Abstract

The fibroblast growth factor (FGF) family is composed of polypeptides with sequence identity which signal through transmembrane tyrosine kinase receptors. We report here the purification from bovine brain microsomes of an FGF-2-binding complex composed of three proteins of apparent molecular masses 150 kDa, 79 kDa and 46 kDa. Only the 150 kDa and 79 kDa proteins bound FGF-2 in cross-linking and ligand-blotting experiments. Binding of FGF-2 to p79 is enhanced in the presence of calcium. Peptide sequences allowed the identification of p150 and the cloning of the cDNAs encoding p79 and p46. The deduced amino acid sequence of p79 reveals high similarity to those of gastrin-binding protein and mitochondrial enoyl-CoA hydratase/hydroxyacyl-CoA dehydrogenase. p46 is similar to mitochondrial ketoacyl-CoA thiolase. Stable transfection of FR3T3 rat fibroblast cells with p79 cDNA analysed by electron microscopy following immunolabelling of ultra-thin cryosections revealed a localization of p79 in the secretory pathway, mainly in the endoplasmic reticulum and the Golgi region, where it is specifically associated with the molecular chaperone calnexin. In vivo a protein similar to the Golgi protein MG-160 forms a complex with FGF-2 and p79.

Full Text

The Full Text of this article is available as a PDF (395.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Aoyama T., Souri M., Ushikubo S., Kamijo T., Yamaguchi S., Kelley R. I., Rhead W. J., Uetake K., Tanaka K., Hashimoto T. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J Clin Invest. 1995 Jun;95(6):2465–2473. doi: 10.1172/JCI117947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bikfalvi A., Klein S., Pintucci G., Quarto N., Mignatti P., Rifkin D. B. Differential modulation of cell phenotype by different molecular weight forms of basic fibroblast growth factor: possible intracellular signaling by the high molecular weight forms. J Cell Biol. 1995 Apr;129(1):233–243. doi: 10.1083/jcb.129.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bikfalvi A., Klein S., Pintucci G., Rifkin D. B. Biological roles of fibroblast growth factor-2. Endocr Rev. 1997 Feb;18(1):26–45. doi: 10.1210/edrv.18.1.0292. [DOI] [PubMed] [Google Scholar]
  5. Bugler B., Amalric F., Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol. 1991 Jan;11(1):573–577. doi: 10.1128/mcb.11.1.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burrus L. W., Olwin B. B. Isolation of a receptor for acidic and basic fibroblast growth factor from embryonic chick. J Biol Chem. 1989 Nov 5;264(31):18647–18653. [PubMed] [Google Scholar]
  7. Burrus L. W., Zuber M. E., Lueddecke B. A., Olwin B. B. Identification of a cysteine-rich receptor for fibroblast growth factors. Mol Cell Biol. 1992 Dec;12(12):5600–5609. doi: 10.1128/mcb.12.12.5600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Courty J., Dauchel M. C., Mereau A., Badet J., Barritault D. Presence of basic fibroblast growth factor receptors in bovine brain membranes. J Biol Chem. 1988 Aug 15;263(23):11217–11220. [PubMed] [Google Scholar]
  9. Coutts J. C., Gallagher J. T. Receptors for fibroblast growth factors. Immunol Cell Biol. 1995 Dec;73(6):584–589. doi: 10.1038/icb.1995.92. [DOI] [PubMed] [Google Scholar]
  10. Dahan S., Ahluwalia J. P., Wong L., Posner B. I., Bergeron J. J. Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes. J Cell Biol. 1994 Dec;127(6 Pt 2):1859–1869. doi: 10.1083/jcb.127.6.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dono R., James D., Zeller R. A GR-motif functions in nuclear accumulation of the large FGF-2 isoforms and interferes with mitogenic signalling. Oncogene. 1998 Apr 23;16(16):2151–2158. doi: 10.1038/sj.onc.1201746. [DOI] [PubMed] [Google Scholar]
  12. Florkiewicz R. Z., Anchin J., Baird A. The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+,K+-ATPase. J Biol Chem. 1998 Jan 2;273(1):544–551. doi: 10.1074/jbc.273.1.544. [DOI] [PubMed] [Google Scholar]
  13. Friesel R. E., Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 1995 Jul;9(10):919–925. doi: 10.1096/fasebj.9.10.7542215. [DOI] [PubMed] [Google Scholar]
  14. Gonatas J. O., Mourelatos Z., Stieber A., Lane W. S., Brosius J., Gonatas N. K. MG-160, a membrane sialoglycoprotein of the medial cisternae of the rat Golgi apparatus, binds basic fibroblast growth factor and exhibits a high level of sequence identity to a chicken fibroblast growth factor receptor. J Cell Sci. 1995 Feb;108(Pt 2):457–467. doi: 10.1242/jcs.108.2.457. [DOI] [PubMed] [Google Scholar]
  15. Honoré B., Madsen P., Leffers H. The tetramethylammonium chloride method for screening of cDNA libraries using highly degenerate oligonucleotides obtained by backtranslation of amino-acid sequences. J Biochem Biophys Methods. 1993 Aug;27(1):39–48. doi: 10.1016/0165-022x(93)90066-w. [DOI] [PubMed] [Google Scholar]
  16. Ijlst L., Uskikubo S., Kamijo T., Hashimoto T., Ruiter J. P., de Klerk J. B., Wanders R. J. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: high frequency of the G1528C mutation with no apparent correlation with the clinical phenotype. J Inherit Metab Dis. 1995;18(2):241–244. doi: 10.1007/BF00711778. [DOI] [PubMed] [Google Scholar]
  17. Isaacs H. V. New perspectives on the role of the fibroblast growth factor family in amphibian development. Cell Mol Life Sci. 1997 Apr;53(4):350–361. doi: 10.1007/PL00000611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Isola L. M., Zhou S. L., Kiang C. L., Stump D. D., Bradbury M. W., Berk P. D. 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9866–9870. doi: 10.1073/pnas.92.21.9866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kamijo T., Aoyama T., Miyazaki J., Hashimoto T. Molecular cloning of the cDNAs for the subunits of rat mitochondrial fatty acid beta-oxidation multienzyme complex. Structural and functional relationships to other mitochondrial and peroxisomal beta-oxidation enzymes. J Biol Chem. 1993 Dec 15;268(35):26452–26460. [PubMed] [Google Scholar]
  20. Kamijo T., Wanders R. J., Saudubray J. M., Aoyama T., Komiyama A., Hashimoto T. Mitochondrial trifunctional protein deficiency. Catalytic heterogeneity of the mutant enzyme in two patients. J Clin Invest. 1994 Apr;93(4):1740–1747. doi: 10.1172/JCI117158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kappeler F., Klopfenstein D. R., Foguet M., Paccaud J. P., Hauri H. P. The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J Biol Chem. 1997 Dec 12;272(50):31801–31808. doi: 10.1074/jbc.272.50.31801. [DOI] [PubMed] [Google Scholar]
  22. Kleijmeer M. J., Oorschot V. M., Geuze H. J. Human resident langerhans cells display a lysosomal compartment enriched in MHC class II. J Invest Dermatol. 1994 Oct;103(4):516–523. doi: 10.1111/1523-1747.ep12395666. [DOI] [PubMed] [Google Scholar]
  23. Kolpakova E., Wiedłocha A., Stenmark H., Klingenberg O., Falnes P. O., Olsnes S. Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor. Biochem J. 1998 Nov 15;336(Pt 1):213–222. doi: 10.1042/bj3360213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  25. LaVallee T. M., Tarantini F., Gamble S., Mouta Carreira C., Jackson A., Maciag T. Synaptotagmin-1 is required for fibroblast growth factor-1 release. J Biol Chem. 1998 Aug 28;273(35):22217–22223. doi: 10.1074/jbc.273.35.22217. [DOI] [PubMed] [Google Scholar]
  26. Lemaître G., Laaroubi K., Soulet L., Barritault D., Miskulin M. Production and purification of active FGF2 via recombinant fusion protein. Biochimie. 1995;77(3):162–166. doi: 10.1016/0300-9084(96)88120-x. [DOI] [PubMed] [Google Scholar]
  27. Mantamadiotis T., Sobieszczuk P., Weinstock J., Baldwin G. S. Nucleotide sequence encoding a novel member of the hydratase/dehydrogenase family. Biochim Biophys Acta. 1993 Oct 13;1170(2):211–215. doi: 10.1016/0005-2760(93)90073-i. [DOI] [PubMed] [Google Scholar]
  28. Mourelatos Z., Gonatas J. O., Cinato E., Gonatas N. K. Cloning and sequence analysis of the human MG160, a fibroblast growth factor and E-selectin binding membrane sialoglycoprotein of the Golgi apparatus. DNA Cell Biol. 1996 Dec;15(12):1121–1128. doi: 10.1089/dna.1996.15.1121. [DOI] [PubMed] [Google Scholar]
  29. Ohbayashi N., Hoshikawa M., Kimura S., Yamasaki M., Fukui S., Itoh N. Structure and expression of the mRNA encoding a novel fibroblast growth factor, FGF-18. J Biol Chem. 1998 Jul 17;273(29):18161–18164. doi: 10.1074/jbc.273.29.18161. [DOI] [PubMed] [Google Scholar]
  30. Ou W. J., Cameron P. H., Thomas D. Y., Bergeron J. J. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993 Aug 26;364(6440):771–776. doi: 10.1038/364771a0. [DOI] [PubMed] [Google Scholar]
  31. Perderiset M., Courty J., Mereau A., Chevet E., Barritault D. Purification of a heparin binding FGF receptor (HB-FGFR) from adult bovine brain membranes. Biochimie. 1992 Dec;74(12):1091–1096. doi: 10.1016/0300-9084(92)90007-2. [DOI] [PubMed] [Google Scholar]
  32. Prats H., Kaghad M., Prats A. C., Klagsbrun M., Lélias J. M., Liauzun P., Chalon P., Tauber J. P., Amalric F., Smith J. A. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1836–1840. doi: 10.1073/pnas.86.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rabin S. J., Cleghon V., Kaplan D. R. SNT, a differentiation-specific target of neurotrophic factor-induced tyrosine kinase activity in neurons and PC12 cells. Mol Cell Biol. 1993 Apr;13(4):2203–2213. doi: 10.1128/mcb.13.4.2203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Renko M., Quarto N., Morimoto T., Rifkin D. B. Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol. 1990 Jul;144(1):108–114. doi: 10.1002/jcp.1041440114. [DOI] [PubMed] [Google Scholar]
  35. Simpson J. C., Dascher C., Roberts L. M., Lord J. M., Balch W. E. Ricin cytotoxicity is sensitive to recycling between the endoplasmic reticulum and the Golgi complex. J Biol Chem. 1995 Aug 25;270(34):20078–20083. doi: 10.1074/jbc.270.34.20078. [DOI] [PubMed] [Google Scholar]
  36. Steegmaier M., Borges E., Berger J., Schwarz H., Vestweber D. The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell surface. J Cell Sci. 1997 Mar;110(Pt 6):687–694. doi: 10.1242/jcs.110.6.687. [DOI] [PubMed] [Google Scholar]
  37. Steegmaier M., Levinovitz A., Isenmann S., Borges E., Lenter M., Kocher H. P., Kleuser B., Vestweber D. The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature. 1995 Feb 16;373(6515):615–620. doi: 10.1038/373615a0. [DOI] [PubMed] [Google Scholar]
  38. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  39. Vincent M. J., Martin A. S., Compans R. W. Function of the KKXX motif in endoplasmic reticulum retrieval of a transmembrane protein depends on the length and structure of the cytoplasmic domain. J Biol Chem. 1998 Jan 9;273(2):950–956. doi: 10.1074/jbc.273.2.950. [DOI] [PubMed] [Google Scholar]
  40. Yoshida M., Gimbrone M. A., Jr Novel roles for E-selectin in endothelial-leukocyte adhesion. Ann N Y Acad Sci. 1997 Apr 15;811:493–497. doi: 10.1111/j.1749-6632.1997.tb52031.x. [DOI] [PubMed] [Google Scholar]
  41. Zhou Z., Zuber M. E., Burrus L. W., Olwin B. B. Identification and characterization of a fibroblast growth factor (FGF) binding domain in the cysteine-rich FGF receptor. J Biol Chem. 1997 Feb 21;272(8):5167–5174. doi: 10.1074/jbc.272.8.5167. [DOI] [PubMed] [Google Scholar]
  42. Zuber M. E., Zhou Z., Burrus L. W., Olwin B. B. Cysteine-rich FGF receptor regulates intracellular FGF-1 and FGF-2 levels. J Cell Physiol. 1997 Mar;170(3):217–227. doi: 10.1002/(SICI)1097-4652(199703)170:3<217::AID-JCP1>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES