Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):777–784. doi: 10.1042/0264-6021:3410777

Cytological evidence that the C-terminus of carnitine palmitoyltransferase I is on the cytosolic face of the mitochondrial outer membrane.

F R van der Leij 1, A M Kram 1, B Bartelds 1, H Roelofsen 1, G B Smid 1, J Takens 1, V A Zammit 1, J R Kuipers 1
PMCID: PMC1220418  PMID: 10417344

Abstract

Carnitine palmitoyltransferase I (CPT I) is a key enzyme in the regulation of beta-oxidation. The topology of this enzyme has been difficult to elucidate by biochemical methods. We studied the topology of a fusion protein of muscle-type CPT I (M-CPT I) and green fluorescent protein (GFP) by microscopical means. To validate the use of the fusion protein, designated CPT I-GFP, we checked whether the main characteristics of native CPT I were retained. CPT I-GFP was expressed in HeLa cells after stable transfection. Confocal laser scanning microscopy in living cells revealed an extranuclear punctate distribution of CPT I-GFP, which coincided with a mitochondrial fluorescent marker. Immunogold electron microscopy localized CPT I-GFP almost exclusively to the mitochondrial periphery and showed that the C-terminus of CPT I must be on the cytosolic face of the mitochondrial outer membrane. Western analysis showed a protein that was 6 kDa smaller than predicted, which is consistent with previous results for the native M-CPT I. Mitochondria from CPT I-GFP-expressing cells showed an increased CPT activity that was inhibited by malonyl-CoA and was lost on solubilization with Triton X-100. We conclude that CPT I-GFP adopts the same topology as native CPT I and that its C-terminus is located on the cytosolic face of the mitochondrial outer membrane. The evidence supports a recently proposed model for the domain structure of CPT I based on biochemical evidence.

Full Text

The Full Text of this article is available as a PDF (312.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartelds B., Gratama J. W., Knoester H., Takens J., Smid G. B., Aarnoudse J. G., Heymans H. S., Kuipers J. R. Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol. 1998 Jun;274(6 Pt 2):H1962–H1969. doi: 10.1152/ajpheart.1998.274.6.H1962. [DOI] [PubMed] [Google Scholar]
  2. Bieber L. L., Wagner M. Effect of pH and acyl-CoA chain length on the conversion of heart mitochondrial CPT-I/CPTo to a high affinity, malonyl-CoA-inhibited state. Biochim Biophys Acta. 1996 Aug 13;1290(3):261–266. doi: 10.1016/0304-4165(96)00028-1. [DOI] [PubMed] [Google Scholar]
  3. Brown N. F., Esser V., Foster D. W., McGarry J. D. Expression of a cDNA for rat liver carnitine palmitoyltransferase I in yeast establishes that catalytic activity and malonyl-CoA sensitivity reside in a single polypeptide. J Biol Chem. 1994 Oct 21;269(42):26438–26442. [PubMed] [Google Scholar]
  4. Cohen I., Kohl C., McGarry J. D., Girard J., Prip-Buus C. The N-terminal domain of rat liver carnitine palmitoyltransferase 1 mediates import into the outer mitochondrial membrane and is essential for activity and malonyl-CoA sensitivity. J Biol Chem. 1998 Nov 6;273(45):29896–29904. doi: 10.1074/jbc.273.45.29896. [DOI] [PubMed] [Google Scholar]
  5. Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
  6. Esser V., Britton C. H., Weis B. C., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J Biol Chem. 1993 Mar 15;268(8):5817–5822. [PubMed] [Google Scholar]
  7. Esser V., Brown N. F., Cowan A. T., Foster D. W., McGarry J. D. Expression of a cDNA isolated from rat brown adipose tissue and heart identifies the product as the muscle isoform of carnitine palmitoyltransferase I (M-CPT I). M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown adipocytes. J Biol Chem. 1996 Mar 22;271(12):6972–6977. doi: 10.1074/jbc.271.12.6972. [DOI] [PubMed] [Google Scholar]
  8. Fraser F., Corstorphine C. G., Price N. T., Zammit V. A. Evidence that carnitine palmitoyltransferase I (CPT I) is expressed in microsomes and peroxisomes of rat liver. Distinct immunoreactivity of the N-terminal domain of the microsomal protein. FEBS Lett. 1999 Mar 5;446(1):69–74. doi: 10.1016/s0014-5793(99)00179-9. [DOI] [PubMed] [Google Scholar]
  9. Fraser F., Corstorphine C. G., Zammit V. A. Evidence that both the acyl-CoA- and malonyl-CoA binding sites of mitochondrial overt carnitine palmitoyltransferase (CPT I) are exposed on the cytosolic face of the outer membrane. Biochem Soc Trans. 1996 May;24(2):184S–184S. doi: 10.1042/bst024184s. [DOI] [PubMed] [Google Scholar]
  10. Fraser F., Corstorphine C. G., Zammit V. A. Topology of carnitine palmitoyltransferase I in the mitochondrial outer membrane. Biochem J. 1997 May 1;323(Pt 3):711–718. doi: 10.1042/bj3230711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Girard J., Ferré P., Pégorier J. P., Duée P. H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992 Apr;72(2):507–562. doi: 10.1152/physrev.1992.72.2.507. [DOI] [PubMed] [Google Scholar]
  12. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  13. IJlst L., Mandel H., Oostheim W., Ruiter J. P., Gutman A., Wanders R. J. Molecular basis of hepatic carnitine palmitoyltransferase I deficiency. J Clin Invest. 1998 Aug 1;102(3):527–531. doi: 10.1172/JCI2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kelly D. P., Strauss A. W. Inherited cardiomyopathies. N Engl J Med. 1994 Mar 31;330(13):913–919. doi: 10.1056/NEJM199403313301308. [DOI] [PubMed] [Google Scholar]
  15. Kiebler M., Keil P., Schneider H., van der Klei I. J., Pfanner N., Neupert W. The mitochondrial receptor complex: a central role of MOM22 in mediating preprotein transfer from receptors to the general insertion pore. Cell. 1993 Aug 13;74(3):483–492. doi: 10.1016/0092-8674(93)80050-o. [DOI] [PubMed] [Google Scholar]
  16. Kolodziej M. P., Zammit V. A. Mature carnitine palmitoyltransferase I retains the N-terminus of the nascent protein in rat liver. FEBS Lett. 1993 Aug 2;327(3):294–296. doi: 10.1016/0014-5793(93)81007-m. [DOI] [PubMed] [Google Scholar]
  17. Kolodziej M. P., Zammit V. A. Re-evaluation of the interaction of malonyl-CoA with the rat liver mitochondrial carnitine palmitoyltransferase system by using purified outer membranes. Biochem J. 1990 Apr 1;267(1):85–90. doi: 10.1042/bj2670085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  19. Maeda M., Doi O., Akamatsu Y. Behavior of vesicular stomatitis virus glycoprotein in mouse LM cells with modified membrane-phospholipids. Biochim Biophys Acta. 1980 Apr 24;597(3):552–563. doi: 10.1016/0005-2736(80)90227-8. [DOI] [PubMed] [Google Scholar]
  20. McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. doi: 10.1111/j.1432-1033.1997.00001.x. [DOI] [PubMed] [Google Scholar]
  21. McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McGarry J. D. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. 1992 Oct 30;258(5083):766–770. doi: 10.1126/science.1439783. [DOI] [PubMed] [Google Scholar]
  23. McMillin J. B., Wang D., Witters L. A., Buja L. M. Kinetic properties of carnitine palmitoyltransferase I in cultured neonatal rat cardiac myocytes. Arch Biochem Biophys. 1994 Aug 1;312(2):375–384. doi: 10.1006/abbi.1994.1322. [DOI] [PubMed] [Google Scholar]
  24. Murthy M. S., Pande S. V. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987 Jan;84(2):378–382. doi: 10.1073/pnas.84.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rizzuto R., Brini M., De Giorgi F., Rossi R., Heim R., Tsien R. Y., Pozzan T. Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol. 1996 Feb 1;6(2):183–188. doi: 10.1016/s0960-9822(02)00451-7. [DOI] [PubMed] [Google Scholar]
  26. Rizzuto R., Brini M., Pizzo P., Murgia M., Pozzan T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol. 1995 Jun 1;5(6):635–642. doi: 10.1016/s0960-9822(95)00128-x. [DOI] [PubMed] [Google Scholar]
  27. Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  29. Swanson S. T., Foster D. W., McGarry J. D., Brown N. F. Roles of the N- and C-terminal domains of carnitine palmitoyltransferase I isoforms in malonyl-CoA sensitivity of the enzymes: insights from expression of chimaeric proteins and mutation of conserved histidine residues. Biochem J. 1998 Nov 1;335(Pt 3):513–519. doi: 10.1042/bj3350513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wigler M., Pellicer A., Silverstein S., Axel R., Urlaub G., Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wolter K. G., Hsu Y. T., Smith C. L., Nechushtan A., Xi X. G., Youle R. J. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997 Dec 1;139(5):1281–1292. doi: 10.1083/jcb.139.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamazaki N., Shinohara Y., Shima A., Yamanaka Y., Terada H. Isolation and characterization of cDNA and genomic clones encoding human muscle type carnitine palmitoyltransferase I. Biochim Biophys Acta. 1996 Jun 7;1307(2):157–161. doi: 10.1016/0167-4781(96)00069-3. [DOI] [PubMed] [Google Scholar]
  33. Zhang G., Gurtu V., Kain S. R. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun. 1996 Oct 23;227(3):707–711. doi: 10.1006/bbrc.1996.1573. [DOI] [PubMed] [Google Scholar]
  34. Zolotukhin S., Potter M., Hauswirth W. W., Guy J., Muzyczka N. A "humanized" green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol. 1996 Jul;70(7):4646–4654. doi: 10.1128/jvi.70.7.4646-4654.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van der Leij F. R., Takens J., van der Veen A. Y., Terpstra P., Kuipers J. R. Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. Biochim Biophys Acta. 1997 May 30;1352(2):123–128. doi: 10.1016/s0167-4781(97)00037-7. [DOI] [PubMed] [Google Scholar]
  36. van der Leij F. R., Visser R. G., Ponstein A. S., Jacobsen E., Feenstra W. J. Sequence of the structural gene for granule-bound starch synthase of potato (Solanum tuberosum L.) and evidence for a single point deletion in the amf allele. Mol Gen Genet. 1991 Aug;228(1-2):240–248. doi: 10.1007/BF00282472. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES