Abstract
We substituted neutral amino acids for some positively charged residues (R42, K107, K146, R148 and K229) that line the active site of aldolase A in an effort to determine binding sites for inositol 1, 4,5-trisphosphate. In addition, D33 (involved in carbon-carbon bond cleavage) was mutated. K229A and D33S aldolases showed almost no catalytic activity, but Ins(1,4,5)P(3) binding was similar to that determined with the use of wild-type aldolase A. R42A, K107A, K146R and R148A had markedly decreased affinities for Ins(1,4,5)P(3) binding, increased EC(50) values for Fru(1,6)P(2)-evoked release of bound Ins(1,4,5)P(3) and increased K(i) values for Ins(1,4, 5)P(3)-evoked inhibition of aldolase activity. K146Q (positive charge removal) had essentially no catalytic activity and could not bind Ins(1,4,5)P(3). Computer-simulated docking of Ins(1,4,5)P(3) in the aldolase A structure was consistent with electrostatic binding of Ins(1,4,5)P(3) to K107, K146, R148, R42, R303 and backbone nitrogens, as has been reported for Fru(1,6)P(2) binding. Results indicate that Ins(1,4,5)P(3) binding occurs at the active site and is not dependent on having a catalytically active enzyme; they also suggest that there is competition between Ins(1,4,5)P(3) and Fru(1, 6)P(2) for binding. Although Ins(1,4,5)P(3) binding to aldolase involved electrostatic interactions, the aldolase A Ins(1,4, 5)P(3)-binding domain did not show other similarities to pleckstrin homology domains or phosphotyrosine-binding domains known to bind Ins(1,4,5)P(3) in other proteins.
Full Text
The Full Text of this article is available as a PDF (335.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baron C. B., Greeley P., Coburn R. F. Smooth muscle aldolase C-bound inositol 1,4,5-trisphosphate studied in vitro under physiological conditions. Biochim Biophys Acta. 1998 Jan 2;1401(1):81–92. doi: 10.1016/s0167-4889(97)00113-4. [DOI] [PubMed] [Google Scholar]
- Baron C. B., Ozaki S., Watanabe Y., Hirata M., LaBelle E. F., Coburn R. F. Inositol 1,4,5-trisphosphate binding to porcine tracheal smooth muscle aldolase. J Biol Chem. 1995 Sep 1;270(35):20459–20465. doi: 10.1074/jbc.270.35.20459. [DOI] [PubMed] [Google Scholar]
- Beernink P. T., Tolan D. R. Construction of a high-copy "ATG vector" for expression in Escherichia coli. Protein Expr Purif. 1992 Aug;3(4):332–336. doi: 10.1016/1046-5928(92)90009-l. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Blom N., Sygusch J. Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat Struct Biol. 1997 Jan;4(1):36–39. doi: 10.1038/nsb0197-36. [DOI] [PubMed] [Google Scholar]
- Blonski C., De Moissac D., Périé J., Sygusch J. Inhibition of rabbit muscle aldolase by phosphorylated aromatic compounds. Biochem J. 1997 Apr 1;323(Pt 1):71–77. doi: 10.1042/bj3230071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalby A., Dauter Z., Littlechild J. A. Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications. Protein Sci. 1999 Feb;8(2):291–297. doi: 10.1110/ps.8.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Ferguson K. M., Lemmon M. A., Schlessinger J., Sigler P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell. 1995 Dec 15;83(6):1037–1046. doi: 10.1016/0092-8674(95)90219-8. [DOI] [PubMed] [Google Scholar]
- Gamblin S. J., Cooper B., Millar J. R., Davies G. J., Littlechild J. A., Watson H. C. The crystal structure of human muscle aldolase at 3.0 A resolution. FEBS Lett. 1990 Mar 26;262(2):282–286. doi: 10.1016/0014-5793(90)80211-z. [DOI] [PubMed] [Google Scholar]
- Gefflaut T., Blonski C., Perie J., Willson M. Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspects. Prog Biophys Mol Biol. 1995;63(3):301–340. doi: 10.1016/0079-6107(95)00008-9. [DOI] [PubMed] [Google Scholar]
- Harlan J. E., Hajduk P. J., Yoon H. S., Fesik S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature. 1994 Sep 8;371(6493):168–170. doi: 10.1038/371168a0. [DOI] [PubMed] [Google Scholar]
- Hartman F. C., Brown J. P. Affinity labeling of a previously undetected essential lysyl residue in class I fructose bisphosphate aldolase. J Biol Chem. 1976 May 25;251(10):3057–3062. [PubMed] [Google Scholar]
- Hyvönen M., Macias M. J., Nilges M., Oschkinat H., Saraste M., Wilmanns M. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 1995 Oct 2;14(19):4676–4685. doi: 10.1002/j.1460-2075.1995.tb00149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen M. P., Wills P. R., Winzor D. J. Thermodynamic analysis of the effects of small inert cosolutes in the ultracentrifugation of noninteracting proteins. Biochemistry. 1996 Oct 8;35(40):13173–13179. doi: 10.1021/bi960939q. [DOI] [PubMed] [Google Scholar]
- Koppitz B., Vogel F., Mayr G. W. Mammalian aldolases are isomer-selective high-affinity inositol polyphosphate binders. Eur J Biochem. 1986 Dec 1;161(2):421–433. doi: 10.1111/j.1432-1033.1986.tb10462.x. [DOI] [PubMed] [Google Scholar]
- Kusakabe T., Motoki K., Hori K. Mode of interactions of human aldolase isozymes with cytoskeletons. Arch Biochem Biophys. 1997 Aug 1;344(1):184–193. doi: 10.1006/abbi.1997.0204. [DOI] [PubMed] [Google Scholar]
- Lai C. Y., Nakai N., Chang D. Amino acid sequence of rabbit muscle aldolase and the structure of the active center. Science. 1974 Mar;183(130):1204–1206. doi: 10.1126/science.183.4130.1204. [DOI] [PubMed] [Google Scholar]
- Lai C. Y., Oshima T. Studies on the structure of rabbit muscle aldolase. 3. Primary structure of the BrCN peptide containing the active site. Arch Biochem Biophys. 1971 May;144(1):363–374. doi: 10.1016/0003-9861(71)90489-9. [DOI] [PubMed] [Google Scholar]
- Lubini D. G., Christen P. Paracatalytic modification of aldolase: a side reaction of the catalytic cycle resulting in irreversible blocking of two active-site lysyl residues. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2527–2531. doi: 10.1073/pnas.76.6.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris A. J., Davenport R. C., Tolan D. R. A lysine to arginine substitution at position 146 of rabbit aldolase A changes the rate-determining step to Schiff base formation. Protein Eng. 1996 Jan;9(1):61–67. doi: 10.1093/protein/9.1.61. [DOI] [PubMed] [Google Scholar]
- Morris A. J., Tolan D. R. Lysine-146 of rabbit muscle aldolase is essential for cleavage and condensation of the C3-C4 bond of fructose 1,6-bis(phosphate). Biochemistry. 1994 Oct 11;33(40):12291–12297. doi: 10.1021/bi00206a036. [DOI] [PubMed] [Google Scholar]
- Morris A. J., Tolan D. R. Site-directed mutagenesis identifies aspartate 33 as a previously unidentified critical residue in the catalytic mechanism of rabbit aldolase A. J Biol Chem. 1993 Jan 15;268(2):1095–1100. [PubMed] [Google Scholar]
- Penhoet E., Rajkumar T., Rutter W. J. Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1275–1282. doi: 10.1073/pnas.56.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUTTER W. J. EVOLUTION OF ALDOLASE. Fed Proc. 1964 Nov-Dec;23:1248–1257. [PubMed] [Google Scholar]
- Rebecchi M. J., Scarlata S. Pleckstrin homology domains: a common fold with diverse functions. Annu Rev Biophys Biomol Struct. 1998;27:503–528. doi: 10.1146/annurev.biophys.27.1.503. [DOI] [PubMed] [Google Scholar]
- Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
- Sygusch J., Beaudry D., Allaire M. Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7846–7850. doi: 10.1073/pnas.84.22.7846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi H., Matsuda M., Yamamoto T., Kanematsu T., Kikkawa U., Yagisawa H., Watanabe Y., Hirata M. PTB domain of insulin receptor substrate-1 binds inositol compounds. Biochem J. 1998 Aug 15;334(Pt 1):211–218. doi: 10.1042/bj3340211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J., Morris A. J., Tolan D. R., Pagliaro L. The molecular nature of the F-actin binding activity of aldolase revealed with site-directed mutants. J Biol Chem. 1996 Mar 22;271(12):6861–6865. [PubMed] [Google Scholar]