Abstract
Mouse L-fibroblast cells stably transfected with either type 1 Ins(1, 4,5)P(3) receptor (InsP(3)R) cDNA (L15) or the vector control (Lvec) have been used to investigate the functional consequences of increased InsP(3)R density on receptor-mediated Ca(2+) signalling. L15 cells express approx. 8-fold higher levels of the type 1 InsP(3)R compared with Lvec cells, which endogenously express essentially only the type 1 InsP(3)R protein. Stimulation of Lvec and L15 cells with UTP or ATP increased cytosolic Ca(2+) concentration to a greater extent in L15 cells at all agonist concentrations. UTP and ATP were equipotent, suggestive of the presence of endogenous cell-surface metabotropic P2Y(2)-purinoceptors. In both cell clones the purinoceptors were coupled via pertussis-toxin-insensitive G-protein(s) to phospholipase C activation, resulting in similar concentration-dependent accumulations of InsP(3). Single-cell microfluorimetry revealed that overexpression of InsP(3)Rs reduced the threshold for purinoceptor-mediated Ca(2+) signalling. L-fibroblasts also exhibited temporally complex sinusoidal cytosolic Ca(2+) oscillations in response to submaximal agonist concentrations, with significant increases in oscillatory frequencies exhibited by cells overexpressing InsP(3)Rs. Sustainable oscillatory responses were dependent on Ca(2+) entry and, at higher agonist concentrations, cytosolic Ca(2+) oscillations were superseded by biphasic peak-and-plateau Ca(2+) responses. Overexpression of InsP(3)Rs in L15 cells resulted in a 4-fold reduction in the threshold for this change in the temporal pattern of Ca(2+) mobilization. These data provide the first direct evidence demonstrating that altering the expression of the type 1 InsP(3)R significantly affects receptor-mediated InsP(3)-induced Ca(2+) mobilization.
Full Text
The Full Text of this article is available as a PDF (276.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acharya J. K., Jalink K., Hardy R. W., Hartenstein V., Zuker C. S. InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron. 1997 Jun;18(6):881–887. doi: 10.1016/s0896-6273(00)80328-1. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Cytoplasmic calcium oscillations: a two pool model. Cell Calcium. 1991 Feb-Mar;12(2-3):63–72. doi: 10.1016/0143-4160(91)90009-4. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
- Bird G. S., Rossier M. F., Obie J. F., Putney J. W., Jr Sinusoidal oscillations in intracellular calcium requiring negative feedback by protein kinase C. J Biol Chem. 1993 Apr 25;268(12):8425–8428. [PubMed] [Google Scholar]
- Blondel O., Bell G. I., Moody M., Miller R. J., Gibbons S. J. Creation of an inositol 1,4,5-trisphosphate-sensitive Ca2+ store in secretory granules of insulin-producing cells. J Biol Chem. 1994 Nov 4;269(44):27167–27170. [PubMed] [Google Scholar]
- Blondel O., Takeda J., Janssen H., Seino S., Bell G. I. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem. 1993 May 25;268(15):11356–11363. [PubMed] [Google Scholar]
- Bradford P. G., Wang X., Jin Y., Hui P. Transcriptional regulation and increased functional expression of the inositol trisphosphate receptor in retinoic acid-treated HL-60 cells. J Biol Chem. 1992 Oct 15;267(29):20959–20964. [PubMed] [Google Scholar]
- Cardy T. J., Traynor D., Taylor C. W. Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca2+. Biochem J. 1997 Dec 15;328(Pt 3):785–793. doi: 10.1042/bj3280785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Challiss R. A., Chilvers E. R., Willcocks A. L., Nahorski S. R. Heterogeneity of [3H]inositol 1,4,5-trisphosphate binding sites in adrenal-cortical membranes. Characterization and validation of a radioreceptor assay. Biochem J. 1990 Jan 15;265(2):421–427. doi: 10.1042/bj2650421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeLisle S., Blondel O., Longo F. J., Schnabel W. E., Bell G. I., Welsh M. J. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca2+ signal of Xenopus oocytes. Am J Physiol. 1996 Apr;270(4 Pt 1):C1255–C1261. doi: 10.1152/ajpcell.1996.270.4.C1255. [DOI] [PubMed] [Google Scholar]
- Fischer G. A., Clementi E., Raichman M., Südhof T., Ullrich A., Meldolesi J. Stable expression of truncated inositol 1,4,5-trisphosphate receptor subunits in 3T3 fibroblasts. Coordinate signaling changes and differential suppression of cell growth and transformation. J Biol Chem. 1994 Jul 29;269(30):19216–19224. [PubMed] [Google Scholar]
- Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. doi: 10.1038/342032a0. [DOI] [PubMed] [Google Scholar]
- Grierson J. P., Meldolesi J. Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously released ATP. J Biol Chem. 1995 Mar 3;270(9):4451–4456. doi: 10.1074/jbc.270.9.4451. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Igwe O. J., Filla M. B. Regulation of phosphatidylinositide transduction system in the rat spinal cord during aging. Neuroscience. 1995 Dec;69(4):1239–1251. doi: 10.1016/0306-4522(95)00298-w. [DOI] [PubMed] [Google Scholar]
- Jayaraman T., Ondrias K., Ondriasová E., Marks A. R. Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science. 1996 Jun 7;272(5267):1492–1494. doi: 10.1126/science.272.5267.1492. [DOI] [PubMed] [Google Scholar]
- Khan A. A., Soloski M. J., Sharp A. H., Schilling G., Sabatini D. M., Li S. H., Ross C. A., Snyder S. H. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science. 1996 Jul 26;273(5274):503–507. doi: 10.1126/science.273.5274.503. [DOI] [PubMed] [Google Scholar]
- Lustig K. D., Shiau A. K., Brake A. J., Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5113–5117. doi: 10.1073/pnas.90.11.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackrill J. J., Wilcox R. A., Miyawaki A., Mikoshiba K., Nahorski S. R., Challiss R. A. Stable overexpression of the type-1 inositol 1,4,5-trisphosphate receptor in L fibroblasts: subcellular distribution and functional consequences. Biochem J. 1996 Sep 15;318(Pt 3):871–878. doi: 10.1042/bj3180871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto M., Nakagawa T., Inoue T., Nagata E., Tanaka K., Takano H., Minowa O., Kuno J., Sakakibara S., Yamada M. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996 Jan 11;379(6561):168–171. doi: 10.1038/379168a0. [DOI] [PubMed] [Google Scholar]
- Mikoshiba K. The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol. 1997 Jun;7(3):339–345. doi: 10.1016/s0959-4388(97)80061-x. [DOI] [PubMed] [Google Scholar]
- Miyawaki A., Furuichi T., Maeda N., Mikoshiba K. Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron. 1990 Jul;5(1):11–18. doi: 10.1016/0896-6273(90)90029-f. [DOI] [PubMed] [Google Scholar]
- Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
- Ross C. A., Danoff S. K., Schell M. J., Snyder S. H., Ullrich A. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4265–4269. doi: 10.1073/pnas.89.10.4265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma K., Wang L., Zhu Y., Bokkala S., Joseph S. K. Transforming growth factor-beta1 inhibits type I inositol 1,4,5-trisphosphate receptor expression and enhances its phosphorylation in mesangial cells. J Biol Chem. 1997 Jun 6;272(23):14617–14623. doi: 10.1074/jbc.272.23.14617. [DOI] [PubMed] [Google Scholar]
- Sipma H., Deelman L., Smedt H. D., Missiaen L., Parys J. B., Vanlingen S., Henning R. H., Casteels R. Agonist-induced down-regulation of type 1 and type 3 inositol 1,4,5-trisphosphate receptors in A7r5 and DDT1 MF-2 smooth muscle cells. Cell Calcium. 1998 Jan;23(1):11–21. doi: 10.1016/s0143-4160(98)90070-7. [DOI] [PubMed] [Google Scholar]
- Südhof T. C., Newton C. L., Archer B. T., 3rd, Ushkaryov Y. A., Mignery G. A. Structure of a novel InsP3 receptor. EMBO J. 1991 Nov;10(11):3199–3206. doi: 10.1002/j.1460-2075.1991.tb04882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas A. P., Bird G. S., Hajnóczky G., Robb-Gaspers L. D., Putney J. W., Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996 Nov;10(13):1505–1517. [PubMed] [Google Scholar]
- Venkatesh K., Hasan G. Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release. Curr Biol. 1997 Jul 1;7(7):500–509. doi: 10.1016/s0960-9822(06)00221-1. [DOI] [PubMed] [Google Scholar]
- Wojcikiewicz R. J., Furuichi T., Nakade S., Mikoshiba K., Nahorski S. R. Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem. 1994 Mar 18;269(11):7963–7969. [PubMed] [Google Scholar]
- Wojcikiewicz R. J., Luo S. G. Phosphorylation of inositol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells. J Biol Chem. 1998 Mar 6;273(10):5670–5677. doi: 10.1074/jbc.273.10.5670. [DOI] [PubMed] [Google Scholar]
- Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
- Yoneshima H., Miyawaki A., Michikawa T., Furuichi T., Mikoshiba K. Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol 1,4,5-trisphosphate receptors. Biochem J. 1997 Mar 1;322(Pt 2):591–596. doi: 10.1042/bj3220591. [DOI] [PMC free article] [PubMed] [Google Scholar]