Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):813–820.

Enhanced purinoceptor-mediated Ca2+ signalling in L-fibroblasts overexpressing type 1 inositol 1,4,5-trisphosphate receptors.

R J Davis 1, J Challiss 1, S R Nahorski 1
PMCID: PMC1220422  PMID: 10417348

Abstract

Mouse L-fibroblast cells stably transfected with either type 1 Ins(1, 4,5)P(3) receptor (InsP(3)R) cDNA (L15) or the vector control (Lvec) have been used to investigate the functional consequences of increased InsP(3)R density on receptor-mediated Ca(2+) signalling. L15 cells express approx. 8-fold higher levels of the type 1 InsP(3)R compared with Lvec cells, which endogenously express essentially only the type 1 InsP(3)R protein. Stimulation of Lvec and L15 cells with UTP or ATP increased cytosolic Ca(2+) concentration to a greater extent in L15 cells at all agonist concentrations. UTP and ATP were equipotent, suggestive of the presence of endogenous cell-surface metabotropic P2Y(2)-purinoceptors. In both cell clones the purinoceptors were coupled via pertussis-toxin-insensitive G-protein(s) to phospholipase C activation, resulting in similar concentration-dependent accumulations of InsP(3). Single-cell microfluorimetry revealed that overexpression of InsP(3)Rs reduced the threshold for purinoceptor-mediated Ca(2+) signalling. L-fibroblasts also exhibited temporally complex sinusoidal cytosolic Ca(2+) oscillations in response to submaximal agonist concentrations, with significant increases in oscillatory frequencies exhibited by cells overexpressing InsP(3)Rs. Sustainable oscillatory responses were dependent on Ca(2+) entry and, at higher agonist concentrations, cytosolic Ca(2+) oscillations were superseded by biphasic peak-and-plateau Ca(2+) responses. Overexpression of InsP(3)Rs in L15 cells resulted in a 4-fold reduction in the threshold for this change in the temporal pattern of Ca(2+) mobilization. These data provide the first direct evidence demonstrating that altering the expression of the type 1 InsP(3)R significantly affects receptor-mediated InsP(3)-induced Ca(2+) mobilization.

Full Text

The Full Text of this article is available as a PDF (276.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya J. K., Jalink K., Hardy R. W., Hartenstein V., Zuker C. S. InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron. 1997 Jun;18(6):881–887. doi: 10.1016/s0896-6273(00)80328-1. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Cytoplasmic calcium oscillations: a two pool model. Cell Calcium. 1991 Feb-Mar;12(2-3):63–72. doi: 10.1016/0143-4160(91)90009-4. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  6. Bird G. S., Rossier M. F., Obie J. F., Putney J. W., Jr Sinusoidal oscillations in intracellular calcium requiring negative feedback by protein kinase C. J Biol Chem. 1993 Apr 25;268(12):8425–8428. [PubMed] [Google Scholar]
  7. Blondel O., Bell G. I., Moody M., Miller R. J., Gibbons S. J. Creation of an inositol 1,4,5-trisphosphate-sensitive Ca2+ store in secretory granules of insulin-producing cells. J Biol Chem. 1994 Nov 4;269(44):27167–27170. [PubMed] [Google Scholar]
  8. Blondel O., Takeda J., Janssen H., Seino S., Bell G. I. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem. 1993 May 25;268(15):11356–11363. [PubMed] [Google Scholar]
  9. Bradford P. G., Wang X., Jin Y., Hui P. Transcriptional regulation and increased functional expression of the inositol trisphosphate receptor in retinoic acid-treated HL-60 cells. J Biol Chem. 1992 Oct 15;267(29):20959–20964. [PubMed] [Google Scholar]
  10. Cardy T. J., Traynor D., Taylor C. W. Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca2+. Biochem J. 1997 Dec 15;328(Pt 3):785–793. doi: 10.1042/bj3280785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Challiss R. A., Chilvers E. R., Willcocks A. L., Nahorski S. R. Heterogeneity of [3H]inositol 1,4,5-trisphosphate binding sites in adrenal-cortical membranes. Characterization and validation of a radioreceptor assay. Biochem J. 1990 Jan 15;265(2):421–427. doi: 10.1042/bj2650421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DeLisle S., Blondel O., Longo F. J., Schnabel W. E., Bell G. I., Welsh M. J. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca2+ signal of Xenopus oocytes. Am J Physiol. 1996 Apr;270(4 Pt 1):C1255–C1261. doi: 10.1152/ajpcell.1996.270.4.C1255. [DOI] [PubMed] [Google Scholar]
  13. Fischer G. A., Clementi E., Raichman M., Südhof T., Ullrich A., Meldolesi J. Stable expression of truncated inositol 1,4,5-trisphosphate receptor subunits in 3T3 fibroblasts. Coordinate signaling changes and differential suppression of cell growth and transformation. J Biol Chem. 1994 Jul 29;269(30):19216–19224. [PubMed] [Google Scholar]
  14. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. doi: 10.1038/342032a0. [DOI] [PubMed] [Google Scholar]
  15. Grierson J. P., Meldolesi J. Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously released ATP. J Biol Chem. 1995 Mar 3;270(9):4451–4456. doi: 10.1074/jbc.270.9.4451. [DOI] [PubMed] [Google Scholar]
  16. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  17. Igwe O. J., Filla M. B. Regulation of phosphatidylinositide transduction system in the rat spinal cord during aging. Neuroscience. 1995 Dec;69(4):1239–1251. doi: 10.1016/0306-4522(95)00298-w. [DOI] [PubMed] [Google Scholar]
  18. Jayaraman T., Ondrias K., Ondriasová E., Marks A. R. Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science. 1996 Jun 7;272(5267):1492–1494. doi: 10.1126/science.272.5267.1492. [DOI] [PubMed] [Google Scholar]
  19. Khan A. A., Soloski M. J., Sharp A. H., Schilling G., Sabatini D. M., Li S. H., Ross C. A., Snyder S. H. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science. 1996 Jul 26;273(5274):503–507. doi: 10.1126/science.273.5274.503. [DOI] [PubMed] [Google Scholar]
  20. Lustig K. D., Shiau A. K., Brake A. J., Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5113–5117. doi: 10.1073/pnas.90.11.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mackrill J. J., Wilcox R. A., Miyawaki A., Mikoshiba K., Nahorski S. R., Challiss R. A. Stable overexpression of the type-1 inositol 1,4,5-trisphosphate receptor in L fibroblasts: subcellular distribution and functional consequences. Biochem J. 1996 Sep 15;318(Pt 3):871–878. doi: 10.1042/bj3180871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsumoto M., Nakagawa T., Inoue T., Nagata E., Tanaka K., Takano H., Minowa O., Kuno J., Sakakibara S., Yamada M. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996 Jan 11;379(6561):168–171. doi: 10.1038/379168a0. [DOI] [PubMed] [Google Scholar]
  23. Mikoshiba K. The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol. 1997 Jun;7(3):339–345. doi: 10.1016/s0959-4388(97)80061-x. [DOI] [PubMed] [Google Scholar]
  24. Miyawaki A., Furuichi T., Maeda N., Mikoshiba K. Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron. 1990 Jul;5(1):11–18. doi: 10.1016/0896-6273(90)90029-f. [DOI] [PubMed] [Google Scholar]
  25. Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
  26. Ross C. A., Danoff S. K., Schell M. J., Snyder S. H., Ullrich A. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4265–4269. doi: 10.1073/pnas.89.10.4265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sharma K., Wang L., Zhu Y., Bokkala S., Joseph S. K. Transforming growth factor-beta1 inhibits type I inositol 1,4,5-trisphosphate receptor expression and enhances its phosphorylation in mesangial cells. J Biol Chem. 1997 Jun 6;272(23):14617–14623. doi: 10.1074/jbc.272.23.14617. [DOI] [PubMed] [Google Scholar]
  28. Sipma H., Deelman L., Smedt H. D., Missiaen L., Parys J. B., Vanlingen S., Henning R. H., Casteels R. Agonist-induced down-regulation of type 1 and type 3 inositol 1,4,5-trisphosphate receptors in A7r5 and DDT1 MF-2 smooth muscle cells. Cell Calcium. 1998 Jan;23(1):11–21. doi: 10.1016/s0143-4160(98)90070-7. [DOI] [PubMed] [Google Scholar]
  29. Südhof T. C., Newton C. L., Archer B. T., 3rd, Ushkaryov Y. A., Mignery G. A. Structure of a novel InsP3 receptor. EMBO J. 1991 Nov;10(11):3199–3206. doi: 10.1002/j.1460-2075.1991.tb04882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomas A. P., Bird G. S., Hajnóczky G., Robb-Gaspers L. D., Putney J. W., Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996 Nov;10(13):1505–1517. [PubMed] [Google Scholar]
  31. Venkatesh K., Hasan G. Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release. Curr Biol. 1997 Jul 1;7(7):500–509. doi: 10.1016/s0960-9822(06)00221-1. [DOI] [PubMed] [Google Scholar]
  32. Wojcikiewicz R. J., Furuichi T., Nakade S., Mikoshiba K., Nahorski S. R. Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem. 1994 Mar 18;269(11):7963–7969. [PubMed] [Google Scholar]
  33. Wojcikiewicz R. J., Luo S. G. Phosphorylation of inositol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells. J Biol Chem. 1998 Mar 6;273(10):5670–5677. doi: 10.1074/jbc.273.10.5670. [DOI] [PubMed] [Google Scholar]
  34. Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
  35. Yoneshima H., Miyawaki A., Michikawa T., Furuichi T., Mikoshiba K. Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol 1,4,5-trisphosphate receptors. Biochem J. 1997 Mar 1;322(Pt 2):591–596. doi: 10.1042/bj3220591. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES