Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):27–32. doi: 10.1042/0264-6021:3420027

Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant-pathogen interactions: enantioselectivity studies.

F Pinot 1, I Benveniste 1, J P Salaün 1, O Loreau 1, J P Noël 1, L Schreiber 1, F Durst 1
PMCID: PMC1220432  PMID: 10432296

Abstract

The major C(18) cutin monomers are 18-hydroxy-9,10-epoxystearic and 9,10,18-trihydroxystearic acids. These compounds are also known messengers in plant-pathogen interactions. We have previously shown that their common precursor 9,10-epoxystearic acid was formed by the epoxidation of oleic acid in Vicia sativa microsomes (Pinot, Salaün, Bosch, Lesot, Mioskowski and Durst (1992) Biochem. Biophys. Res. Commun. 184, 183-193). Here we determine the chirality of the epoxide produced as (9R,10S) and (9S,10R) in the ratio 90:10 respectively. We further show that microsomes from yeast expressing the cytochrome P450 CYP94A1 are capable of hydroxylating the methyl terminus of 9,10-epoxystearic and 9,10-dihydroxystearic acids in the presence of NADPH to form the corresponding 18-hydroxy derivatives. The reactions were not catalysed by microsomes from yeast transformed with a void plasmid or in absence of NADPH. After incubation of a synthetic racemic mixture of 9,10-epoxystearic acid with microsomes of yeast expressing CYP94A1, the chirality of the residual epoxide was shifted to 66:34 in favour of the (9S,10R) enantiomer. Both enantiomers were incubated separately and V(max)/K(m) values of 16 and 3.42 ml/min per nmol of P450 for (9R, 10S) and (9S,10R) respectively were determined, demonstrating that CYP94A1 is enantioselective for the (9R,10S) enantiomer, which is preferentially formed in V. sativa microsomes. Compared with the epoxide, the diol 9,10-dihydroxystearic acid was a much poorer substrate for the omega-hydroxylase, with a measured V(max)/K(m) of 0.33 ml/min per nmol of P450. Our results indicate that the activity of CYP94A1 is strongly influenced by the stereochemistry of the 9, 10-epoxide and the nature of substituents on carbons 9 and 10, with V(max)/K(m) values for epoxide>>oleic acid>diol.

Full Text

The Full Text of this article is available as a PDF (140.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crowhurst R. N., Binnie S. J., Bowen J. K., Hawthorne B. T., Plummer K. M., Rees-George J., Rikkerink E. H., Templeton M. D. Effect of disruption of a cutinase gene (cutA) on virulence and tissue specificity of Fusarium solani f. sp. cucurbitae race 2 toward Cucurbita maxima and C. moschata. Mol Plant Microbe Interact. 1997 Apr;10(3):355–368. doi: 10.1094/MPMI.1997.10.3.355. [DOI] [PubMed] [Google Scholar]
  2. Dierks E. A., Davis S. C., Ortiz de Montellano P. R. Glu-320 and Asp-323 are determinants of the CYP4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole. Biochemistry. 1998 Feb 17;37(7):1839–1847. doi: 10.1021/bi972458s. [DOI] [PubMed] [Google Scholar]
  3. Dierks E. A., Zhang Z., Johnson E. F., de Montellano P. R. The catalytic site of cytochrome P4504A11 (CYP4A11) and its L131F mutant. J Biol Chem. 1998 Sep 4;273(36):23055–23061. doi: 10.1074/jbc.273.36.23055. [DOI] [PubMed] [Google Scholar]
  4. Durst F., Nelson D. R. Diversity and evolution of plant P450 and P450-reductases. Drug Metabol Drug Interact. 1995;12(3-4):189–206. doi: 10.1515/dmdi.1995.12.3-4.189. [DOI] [PubMed] [Google Scholar]
  5. Fauth M, Schweizer P, Buchala A, Markstadter C, Riederer M, Kato T, Kauss H. Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors . Plant Physiol. 1998 Aug;117(4):1373–1380. doi: 10.1104/pp.117.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hamberg M., Hamberg G. Hydroperoxide-dependent epoxidation of unsaturated fatty acids in the broad bean (Vicia faba L.). Arch Biochem Biophys. 1990 Dec;283(2):409–416. doi: 10.1016/0003-9861(90)90662-i. [DOI] [PubMed] [Google Scholar]
  7. Helvig C., Alayrac C., Mioskowski C., Koop D., Poullain D., Durst F., Salaün J. P. Suicide inactivation of cytochrome P450 by midchain and terminal acetylenes. A mechanistic study of inactivation of a plant lauric acid omega-hydroxylase. J Biol Chem. 1997 Jan 3;272(1):414–421. doi: 10.1074/jbc.272.1.414. [DOI] [PubMed] [Google Scholar]
  8. Higashi S., Murata N. An in Vivo Study of Substrate Specificities of Acyl-Lipid Desaturases and Acyltransferases in Lipid Synthesis in Synechocystis PCC6803. Plant Physiol. 1993 Aug;102(4):1275–1278. doi: 10.1104/pp.102.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kolattukudy P. E., Rogers L. M., Li D., Hwang C. S., Flaishman M. A. Surface signaling in pathogenesis. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4080–4087. doi: 10.1073/pnas.92.10.4080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li D., Kolattukudy P. E. Cloning and expression of cDNA encoding a protein that binds a palindromic promoter element essential for induction of fungal cutinase by plant cutin. J Biol Chem. 1995 May 19;270(20):11753–11756. doi: 10.1074/jbc.270.20.11753. [DOI] [PubMed] [Google Scholar]
  11. Li H., Poulos T. L. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol. 1997 Feb;4(2):140–146. doi: 10.1038/nsb0297-140. [DOI] [PubMed] [Google Scholar]
  12. Miura Y., Fulco A. J. Omega-1, Omega-2 and Omega-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium. Biochim Biophys Acta. 1975 Jun 23;388(3):305–317. doi: 10.1016/0005-2760(75)90089-2. [DOI] [PubMed] [Google Scholar]
  13. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  14. Pinot F., Bosch H., Alayrac C., Mioskowski C., Vendais A., Durst F., Salaun J. P. [omega]-Hydroxylation of Oleic Acid in Vicia sativa Microsomes (Inhibition by Substrate Analogs and Inactivation by Terminal Acetylenes). Plant Physiol. 1993 Aug;102(4):1313–1318. doi: 10.1104/pp.102.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pinot F., Salaün J. P., Bosch H., Lesot A., Mioskowski C., Durst F. omega-Hydroxylation of Z9-octadecenoic, Z9,10-epoxystearic and 9,10-dihydroxystearic acids by microsomal cytochrome P450 systems from Vicia sativa. Biochem Biophys Res Commun. 1992 Apr 15;184(1):183–193. doi: 10.1016/0006-291x(92)91176-q. [DOI] [PubMed] [Google Scholar]
  16. Pinot F, Benveniste I, I, Sala n JP, Durst F. Methyl jasmonate induces lauric acid omega-hydroxylase activity and accumulation of CYP94A1 transcripts but does not affect epoxide hydrolase activities in vicia sativa seedlings . Plant Physiol. 1998 Dec;118(4):1481–1486. doi: 10.1104/pp.118.4.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pompon D., Louerat B., Bronine A., Urban P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 1996;272:51–64. doi: 10.1016/s0076-6879(96)72008-6. [DOI] [PubMed] [Google Scholar]
  18. Simpson A. E. The cytochrome P450 4 (CYP4) family. Gen Pharmacol. 1997 Mar;28(3):351–359. doi: 10.1016/s0306-3623(96)00246-7. [DOI] [PubMed] [Google Scholar]
  19. Tijet N., Helvig C., Pinot F., Le Bouquin R., Lesot A., Durst F., Salaün J. P., Benveniste I. Functional expression in yeast and characterization of a clofibrate-inducible plant cytochrome P-450 (CYP94A1) involved in cutin monomers synthesis. Biochem J. 1998 Jun 1;332(Pt 2):583–589. doi: 10.1042/bj3320583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weissbart D., Salaün J. P., Durst F., Pflieger P., Mioskowski C. Regioselectivity of a plant lauric acid omega hydroxylase. Omega hydroxylation of cis and trans unsaturated lauric acid analogs and epoxygenation of the terminal olefin by plant cytochrome P-450. Biochim Biophys Acta. 1992 Mar 4;1124(2):135–142. doi: 10.1016/0005-2760(92)90089-e. [DOI] [PubMed] [Google Scholar]
  21. Woloshuk C. P., Kolattukudy P. E. Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1704–1708. doi: 10.1073/pnas.83.6.1704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zimmer T., Scheller U., Takagi M., Schunck W. H. Mutual conversion of fatty-acid substrate specificity by a single amino-acid exchange at position 527 in P-450Cm2 and P-450Alk3A. Eur J Biochem. 1998 Sep 1;256(2):398–403. doi: 10.1046/j.1432-1327.1998.2560398.x. [DOI] [PubMed] [Google Scholar]
  23. van Kan J. A., van't Klooster J. W., Wagemakers C. A., Dees D. C., van der Vlugt-Bergmans C. J. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant Microbe Interact. 1997 Jan;10(1):30–38. doi: 10.1094/MPMI.1997.10.1.30. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES