Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):41–48.

Acylation-stimulating protein (ASP): structure-function determinants of cell surface binding and triacylglycerol synthetic activity.

I Murray 1, J Köhl 1, K Cianflone 1
PMCID: PMC1220434  PMID: 10432298

Abstract

Acylation-stimulating protein (ASP or C3adesArg) is a potent lipogenic factor in human and murine adipocytes and fibroblasts. The arginated form of ASP, i.e. complement C3a (C3a), stimulates immunological responses in human granulocytes, mast cells, guinea pig platelets and guinea pig macrophages; however, ASP is inactive in stimulating these responses. Thus both ASP and C3a are bioactive across species but are not functionally interchangeable. Tertiary structure of both proteins by X-ray crystallography and NMR spectroscopy predicts a tightly linked core region consisting of three alpha-helices linked via three disulphide bonds, with one of the alpha-helices extending out from the core and terminating in a flexible conformationally irregular carboxy-tail region. The present studies were undertaken in order to define the functionally active domains of ASP, distinctive from those of C3a, using chemical modifications, enzymic cleavage and synthetic peptide fragments. The results indicate that: (i) the N-terminal region (<10 amino acids) plays little role in ASP receptor binding and triacylglycerol synthesis stimulation; (ii) the native C-terminal region had no activity, but modifications which increased hydrophobicity increased receptor binding, and led to some activation of triacylglycerol synthesis stimulation; (iii) an intact disulphide-linked core region is essential for triacylglycerol synthesis stimulation activity but not for receptor interaction. Finally, basic charges in the carboxy region (His) are essential for ASP triacylglycerol synthesis stimulation but not for receptor binding, whereas both functions are eliminated by the modification of Lys in the disulphide-linked core region. The present results suggest that there are two functional domains in ASP, one that is responsible for the initial binding to the cell surface receptor, and a second domain that activates and increases triacylglycerol synthesis stimulation. This contrasts markedly with the structure-function studies of C3a where both binding competency and function were dependent on the C-terminal Arg. Thus ASP demonstrates distinct bioactivity.

Full Text

The Full Text of this article is available as a PDF (136.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ailhaud G., Grimaldi P., Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr. 1992;12:207–233. doi: 10.1146/annurev.nu.12.070192.001231. [DOI] [PubMed] [Google Scholar]
  2. Alsenz J., Avila D., Huemer H. P., Esparza I., Becherer J. D., Kinoshita T., Wang Y., Oppermann S., Lambris J. D. Phylogeny of the third component of complement, C3: analysis of the conservation of human CR1, CR2, H, and B binding sites, concanavalin A binding sites, and thiolester bond in the C3 from different species. Dev Comp Immunol. 1992 Jan-Feb;16(1):63–76. doi: 10.1016/0145-305x(92)90052-e. [DOI] [PubMed] [Google Scholar]
  3. Ambrosius D., Casaretto M., Gerardy-Schahn R., Saunders D., Brandenburg D., Zahn H. Peptide analogues of the anaphylatoxin C3a; syntheses and properties. Biol Chem Hoppe Seyler. 1989 Mar;370(3):217–227. doi: 10.1515/bchm3.1989.370.1.217. [DOI] [PubMed] [Google Scholar]
  4. Ames R. S., Li Y., Sarau H. M., Nuthulaganti P., Foley J. J., Ellis C., Zeng Z., Su K., Jurewicz A. J., Hertzberg R. P. Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem. 1996 Aug 23;271(34):20231–20234. doi: 10.1074/jbc.271.34.20231. [DOI] [PubMed] [Google Scholar]
  5. Auerbach H. S., Burger R., Dodds A., Colten H. R. Molecular basis of complement C3 deficiency in guinea pigs. J Clin Invest. 1990 Jul;86(1):96–106. doi: 10.1172/JCI114721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baldo A., Sniderman A. D., St Luce S., Zhang X. J., Cianflone K. Signal transduction pathway of acylation stimulating protein: involvement of protein kinase C. J Lipid Res. 1995 Jul;36(7):1415–1426. [PubMed] [Google Scholar]
  7. Baldo A., Sniderman A. D., St-Luce S., Avramoglu R. K., Maslowska M., Hoang B., Monge J. C., Bell A., Mulay S., Cianflone K. The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J Clin Invest. 1993 Sep;92(3):1543–1547. doi: 10.1172/JCI116733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bischoff S. C., de Weck A. L., Dahinden C. A. Interleukin 3 and granulocyte/macrophage-colony-stimulating factor render human basophils responsive to low concentrations of complement component C3a. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6813–6817. doi: 10.1073/pnas.87.17.6813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  10. Brown M., Webb M., Phillips E., Skidmore E., McIntyre P. Molecular studies on kinin receptors. Can J Physiol Pharmacol. 1995 Jul;73(7):780–786. doi: 10.1139/y95-105. [DOI] [PubMed] [Google Scholar]
  11. Bubeck P., Grötzinger J., Winkler M., Köhl J., Wollmer A., Klos A., Bautsch W. Site-specific mutagenesis of residues in the human C5a anaphylatoxin which are involved in possible interaction with the C5a receptor. Eur J Biochem. 1994 Feb 1;219(3):897–904. doi: 10.1111/j.1432-1033.1994.tb18571.x. [DOI] [PubMed] [Google Scholar]
  12. Cianflone K. M., Maslowska M. H., Sniderman A. D. Impaired response of fibroblasts from patients with hyperapobetalipoproteinemia to acylation-stimulating protein. J Clin Invest. 1990 Mar;85(3):722–730. doi: 10.1172/JCI114497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cianflone K., Kalant D., Marliss E. B., Gougeon R., Sniderman A. D. Response of plasma ASP to a prolonged fast. Int J Obes Relat Metab Disord. 1995 Sep;19(9):604–609. [PubMed] [Google Scholar]
  14. Cianflone K., Roncari D. A., Maslowska M., Baldo A., Forden J., Sniderman A. D. Adipsin/acylation stimulating protein system in human adipocytes: regulation of triacylglycerol synthesis. Biochemistry. 1994 Aug 16;33(32):9489–9495. doi: 10.1021/bi00198a014. [DOI] [PubMed] [Google Scholar]
  15. Cianflone K. The acylation stimulating protein pathway: clinical implications. Clin Biochem. 1997 Jun;30(4):301–312. doi: 10.1016/s0009-9120(97)00011-8. [DOI] [PubMed] [Google Scholar]
  16. Cianflone K., Zhang X. J., Genest J., Jr, Sniderman A. Plasma acylation-stimulating protein in coronary artery disease. Arterioscler Thromb Vasc Biol. 1997 Jul;17(7):1239–1244. [PubMed] [Google Scholar]
  17. Corbin N. C., Hugli T. E. The primary structure of porcine C3a anaphylatoxin. J Immunol. 1976 Sep;117(3):990–995. [PubMed] [Google Scholar]
  18. Crass T., Raffetseder U., Martin U., Grove M., Klos A., Köhl J., Bautsch W. Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells. Eur J Immunol. 1996 Aug;26(8):1944–1950. doi: 10.1002/eji.1830260840. [DOI] [PubMed] [Google Scholar]
  19. Daffern P. J., Pfeifer P. H., Ember J. A., Hugli T. E. C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. J Exp Med. 1995 Jun 1;181(6):2119–2127. doi: 10.1084/jem.181.6.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Elsner J., Oppermann M., Czech W., Kapp A. C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood. 1994 Jun 1;83(11):3324–3331. [PubMed] [Google Scholar]
  21. Ember J. A., Johansen N. L., Hugli T. E. A new approach to designing active analogues of proteins. Biochem Soc Trans. 1990 Dec;18(6):1154–1155. doi: 10.1042/bst0181154. [DOI] [PubMed] [Google Scholar]
  22. Ember J. A., Johansen N. L., Hugli T. E. Designing synthetic superagonists of C3a anaphylatoxin. Biochemistry. 1991 Apr 16;30(15):3603–3612. doi: 10.1021/bi00229a003. [DOI] [PubMed] [Google Scholar]
  23. Federwisch M., Casaretto M., Gerardy-Schahn R., Bitter-Suermann D., Wollmer A. Enhanced biopotency of synthetic C3a analogues by membrane binding. A fluorescence anisotropy decay study. Biophys Chem. 1992 Oct;44(3):151–161. doi: 10.1016/0301-4622(92)80048-a. [DOI] [PubMed] [Google Scholar]
  24. Fey G. H., Lundwall A., Wetsel R. A., Tack B. F., de Bruijn M. H., Domdey H. Nucleotide sequence of complementary DNA and derived amino acid sequence of murine complement protein C3. Philos Trans R Soc Lond B Biol Sci. 1984 Sep 6;306(1129):333–344. doi: 10.1098/rstb.1984.0094. [DOI] [PubMed] [Google Scholar]
  25. Fritzinger D. C., Petrella E. C., Connelly M. B., Bredehorst R., Vogel C. W. Primary structure of cobra complement component C3. J Immunol. 1992 Dec 1;149(11):3554–3562. [PubMed] [Google Scholar]
  26. Fukuoka Y., Hugli T. E. Demonstration of a specific C3a receptor on guinea pig platelets. J Immunol. 1988 May 15;140(10):3496–3501. [PubMed] [Google Scholar]
  27. Fukuoka Y., Yasui A., Tachibana T. Active recombinant C3a of human anaphylatoxin produced in Escherichia coli. Biochem Biophys Res Commun. 1991 Mar 29;175(3):1131–1138. doi: 10.1016/0006-291x(91)91683-4. [DOI] [PubMed] [Google Scholar]
  28. GROSS E., WITKOP B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem. 1962 Jun;237:1856–1860. [PubMed] [Google Scholar]
  29. Gerardy-Schahn R., Ambrosius D., Casaretto M., Grötzinger J., Saunders D., Wollmer A., Brandenburg D., Bitter-Suermann D. Design and biological activity of a new generation of synthetic C3a analogues by combination of peptidic and non-peptidic elements. Biochem J. 1988 Oct 1;255(1):209–216. [PMC free article] [PubMed] [Google Scholar]
  30. Gerardy-Schahn R., Ambrosius D., Saunders D., Casaretto M., Mittler C., Karwarth G., Görgen S., Bitter-Suermann D. Characterization of C3a receptor-proteins on guinea pig platelets and human polymorphonuclear leukocytes. Eur J Immunol. 1989 Jun;19(6):1095–1102. doi: 10.1002/eji.1830190620. [DOI] [PubMed] [Google Scholar]
  31. Germinario R., Sniderman A. D., Manuel S., Lefebvre S. P., Baldo A., Cianflone K. Coordinate regulation of triacylglycerol synthesis and glucose transport by acylation-stimulating protein. Metabolism. 1993 May;42(5):574–580. doi: 10.1016/0026-0495(93)90215-a. [DOI] [PubMed] [Google Scholar]
  32. Hartmann K., Henz B. M., Krüger-Krasagakes S., Köhl J., Burger R., Guhl S., Haase I., Lippert U., Zuberbier T. C3a and C5a stimulate chemotaxis of human mast cells. Blood. 1997 Apr 15;89(8):2863–2870. [PubMed] [Google Scholar]
  33. Hennecke M., Otto A., Baensch M., Kola A., Bautsch W., Klos A., Köhl J. A detailed analysis of the C5a anaphylatoxin effector domain: selection of C5a phage libraries on differentiated U937 cells. Eur J Biochem. 1998 Feb 15;252(1):36–44. doi: 10.1046/j.1432-1327.1998.2520036.x. [DOI] [PubMed] [Google Scholar]
  34. Hugli T. E., Morgan W. T., Müller-Eberhard H. J. Circular dichroism of C3a anaphylatoxin. Effects of pH, heat, guanidinium chloride, and mercaptoethanol on conformation and function. J Biol Chem. 1975 Feb 25;250(4):1479–1483. [PubMed] [Google Scholar]
  35. Hugli T. E. Structure and function of C3a anaphylatoxin. Curr Top Microbiol Immunol. 1990;153:181–208. doi: 10.1007/978-3-642-74977-3_10. [DOI] [PubMed] [Google Scholar]
  36. Kawai M., Quincy D. A., Lane B., Mollison K. W., Luly J. R., Carter G. W. Identification and synthesis of a receptor binding site of human anaphylatoxin C5a. J Med Chem. 1991 Jul;34(7):2068–2071. doi: 10.1021/jm00111a022. [DOI] [PubMed] [Google Scholar]
  37. Klos A., Bank S., Gietz C., Bautsch W., Köhl J., Burg M., Kretzschmar T. C3a receptor on dibutyryl-cAMP-differentiated U937 cells and human neutrophils: the human C3a receptor characterized by functional responses and 125I-C3a binding. Biochemistry. 1992 Nov 24;31(46):11274–11282. doi: 10.1021/bi00161a003. [DOI] [PubMed] [Google Scholar]
  38. Kola A., Klos A., Bautsch W., Kretzschmar T., Köhl J. Functional activities of synthetic anaphylatoxic peptides in widely used biological assays. Clin Exp Immunol. 1992 May;88(2):368–372. doi: 10.1111/j.1365-2249.1992.tb03090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kretzschmar T., Jeromin A., Gietz C., Bautsch W., Klos A., Köhl J., Rechkemmer G., Bitter-Suermann D. Chronic myelogenous leukemia-derived basophilic granulocytes express a functional active receptor for the anaphylatoxin C3a. Eur J Immunol. 1993 Feb;23(2):558–561. doi: 10.1002/eji.1830230239. [DOI] [PubMed] [Google Scholar]
  40. Kretzschmar T., Pohl M., Casaretto M., Przewosny M., Bautsch W., Klos A., Saunders D., Köhl J. Synthetic peptides as antagonists of the anaphylatoxin C3a. Eur J Biochem. 1992 Nov 15;210(1):185–191. doi: 10.1111/j.1432-1033.1992.tb17407.x. [DOI] [PubMed] [Google Scholar]
  41. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  42. Lambris J. D., Lao Z., Pang J., Alsenz J. Third component of trout complement. cDNA cloning and conservation of functional sites. J Immunol. 1993 Dec 1;151(11):6123–6134. [PubMed] [Google Scholar]
  43. Legler D. F., Loetscher M., Jones S. A., Dahinden C. A., Arock M., Moser B. Expression of high- and low-affinity receptors for C3a on the human mast cell line, HMC-1. Eur J Immunol. 1996 Apr;26(4):753–758. doi: 10.1002/eji.1830260405. [DOI] [PubMed] [Google Scholar]
  44. Lu Z. X., Fok K. F., Erickson B. W., Hugli T. E. Conformational analysis of COOH-terminal segments of human C3a. Evidence of ordered conformation in an active 21-residue peptide. J Biol Chem. 1984 Jun 25;259(12):7367–7370. [PubMed] [Google Scholar]
  45. Martin U., Bock D., Arseniev L., Tornetta M. A., Ames R. S., Bautsch W., Köhl J., Ganser A., Klos A. The human C3a receptor is expressed on neutrophils and monocytes, but not on B or T lymphocytes. J Exp Med. 1997 Jul 21;186(2):199–207. doi: 10.1084/jem.186.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Maslowska M., Sniderman A. D., Germinario R., Cianflone K. ASP stimulates glucose transport in cultured human adipocytes. Int J Obes Relat Metab Disord. 1997 Apr;21(4):261–266. doi: 10.1038/sj.ijo.0800396. [DOI] [PubMed] [Google Scholar]
  47. Mavroidis M., Sunyer J. O., Lambris J. D. Isolation, primary structure, and evolution of the third component of chicken complement and evidence for a new member of the alpha 2-macroglobulin family. J Immunol. 1995 Mar 1;154(5):2164–2174. [PubMed] [Google Scholar]
  48. Meuer S., Ecker U., Hadding U., Bitter-Suermann D. Platelet-serotonin release by C3a and C5a: two independent pathways of activation. J Immunol. 1981 Apr;126(4):1506–1509. [PubMed] [Google Scholar]
  49. Misumi Y., Sohda M., Ikehara Y. Nucleotide and deduced amino acid sequence of rat complement C3. Nucleic Acids Res. 1990 Apr 25;18(8):2178–2178. doi: 10.1093/nar/18.8.2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Murray I., Parker R. A., Kirchgessner T. G., Tran J., Zhang Z. J., Westerlund J., Cianflone K. Functional bioactive recombinant acylation stimulating protein is distinct from C3a anaphylatoxin. J Lipid Res. 1997 Dec;38(12):2492–2501. [PubMed] [Google Scholar]
  51. Muto Y., Fukumoto Y., Arata Y. Proton nuclear magnetic resonance study of the third component of complement: solution conformation of the carboxyl-terminal segment of C3a fragment. Biochemistry. 1985 Nov 5;24(23):6659–6665. doi: 10.1021/bi00344a054. [DOI] [PubMed] [Google Scholar]
  52. Nonaka M., Takahashi M. Complete complementary DNA sequence of the third component of complement of lamprey. Implication for the evolution of thioester containing proteins. J Immunol. 1992 May 15;148(10):3290–3295. [PubMed] [Google Scholar]
  53. Pâques E. P., Scholze H., Huber R. Purification and crystallization of human anaphylatoxin, C3a. Hoppe Seylers Z Physiol Chem. 1980;361(6):977–980. [PubMed] [Google Scholar]
  54. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  55. Regoli D., Gobeil F. Pharmacology of kinin receptors: recent developments. Can J Physiol Pharmacol. 1995 Jul;73(7):791–796. doi: 10.1139/y95-107. [DOI] [PubMed] [Google Scholar]
  56. Saleh J., Summers L. K., Cianflone K., Fielding B. A., Sniderman A. D., Frayn K. N. Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. J Lipid Res. 1998 Apr;39(4):884–891. [PubMed] [Google Scholar]
  57. Tao Y., Cianflone K., Sniderman A. D., Colby-Germinario S. P., Germinario R. J. Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line. Biochim Biophys Acta. 1997 Feb 18;1344(3):221–229. doi: 10.1016/s0005-2760(96)00144-0. [DOI] [PubMed] [Google Scholar]
  58. Turk T., Macek P. The role of lysine, histidine and carboxyl residues in biological activity of equinatoxin II, a pore forming polypeptide from the sea anemone Actinia equina L. Biochim Biophys Acta. 1992 Feb 13;1119(1):5–10. doi: 10.1016/0167-4838(92)90226-4. [DOI] [PubMed] [Google Scholar]
  59. Yasruel Z., Cianflone K., Sniderman A. D., Rosenbloom M., Walsh M., Rodriguez M. A. Effect of acylation stimulating protein on the triacylglycerol synthetic pathway of human adipose tissue. Lipids. 1991 Jul;26(7):495–499. doi: 10.1007/BF02536592. [DOI] [PubMed] [Google Scholar]
  60. Zhang X. J., Cianflone K., Genest J., Sniderman A. D. Plasma acylation stimulating protein (ASP) as a predictor of impaired cellular biological response to ASP in patients with hyperapoB. Eur J Clin Invest. 1998 Sep;28(9):730–739. doi: 10.1046/j.1365-2362.1998.00359.x. [DOI] [PubMed] [Google Scholar]
  61. Zwirner J., Werfel T., Wilken H. C., Theile E., Götze O. Anaphylatoxin C3a but not C3a(desArg) is a chemotaxin for the mouse macrophage cell line J774. Eur J Immunol. 1998 May;28(5):1570–1577. doi: 10.1002/(SICI)1521-4141(199805)28:05<1570::AID-IMMU1570>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES