Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):57–64.

Cloning and expression of murine liver phosphatidylserine synthase (PSS)-2: differential regulation of phospholipid metabolism by PSS1 and PSS2.

S J Stone 1, J E Vance 1
PMCID: PMC1220436  PMID: 10432300

Abstract

Phosphatidylserine (PtdSer) is synthesized in mammalian cells by two base-exchange enzymes: PtdSer synthase (PSS)-1 primarily uses phosphatidylcholine as a substrate for exchange with serine, whereas PSS2 uses phosphatidylethanolamine (PtdEtn). We previously expressed murine PSS1 in McArdle hepatoma cells. The activity of PSS1 in vitro and the synthesis of PtdSer and PtdSer-derived PtdEtn were increased, whereas PtdEtn synthesis from the CDP-ethanolamine pathway was inhibited [Stone, Cui and Vance (1998) J. Biol. Chem. 273, 7293-7302]. We have now cloned and stably expressed a murine PSS2 cDNA in McArdle cells and M.9.1.1 cells [which are ethanolamine-requiring mutant Chinese hamster ovary (CHO) cells defective in PSS1]. Expression of the PSS2 in M.9.1.1 cells reversed the ethanolamine auxotrophy. However, the PtdEtn content was not normalized unless the culture medium was supplemented with ethanolamine. In both M.9.1.1 and hepatoma cells transfected with PSS2 cDNA the rate of synthesis of PtdSer and PtdSer-derived PtdEtn did not exceed that in parental CHO cells or control McArdle cells respectively, in contrast to cells expressing similar levels of murine PSS1. These observations suggest that PtdSer synthesis via murine PSS2, but not PSS1, is regulated by end-product inhibition. Moreover, expression of murine PSS2 in McArdle cells did not inhibit PtdEtn synthesis via the CDP-ethanolamine pathway, whereas expression of similar levels of PSS1 activity inhibited this pathway by approx. 50%. We conclude that murine PSS1 and PSS2, which are apparently derived from different genes, independently modulate phospholipid metabolism. In addition, mRNAs encoding the two synthases are differentially expressed in several murine tissues, supporting the idea that PSS1 and PSS2 might perform unique functions.

Full Text

The Full Text of this article is available as a PDF (214.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dennis E. A., Kennedy E. P. Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J Lipid Res. 1972 Mar;13(2):263–267. [PubMed] [Google Scholar]
  4. Hasegawa K., Kuge O., Nishijima M., Akamatsu Y. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis. J Biol Chem. 1989 Nov 25;264(33):19887–19892. [PubMed] [Google Scholar]
  5. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  6. Kuge O., Hasegawa K., Saito K., Nishijima M. Control of phosphatidylserine biosynthesis through phosphatidylserine-mediated inhibition of phosphatidylserine synthase I in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4199–4203. doi: 10.1073/pnas.95.8.4199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuge O., Nishijima M., Akamatsu Y. A Chinese hamster cDNA encoding a protein essential for phosphatidylserine synthase I activity. J Biol Chem. 1991 Dec 15;266(35):24184–24189. [PubMed] [Google Scholar]
  8. Kuge O., Nishijima M., Akamatsu Y. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs. J Biol Chem. 1986 May 5;261(13):5790–5794. [PubMed] [Google Scholar]
  9. Kuge O., Nishijima M., Akamatsu Y. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors. J Biol Chem. 1986 May 5;261(13):5795–5798. [PubMed] [Google Scholar]
  10. Kuge O., Saito K., Nishijima M. Cloning of a Chinese hamster ovary (CHO) cDNA encoding phosphatidylserine synthase (PSS) II, overexpression of which suppresses the phosphatidylserine biosynthetic defect of a PSS I-lacking mutant of CHO-K1 cells. J Biol Chem. 1997 Aug 1;272(31):19133–19139. doi: 10.1074/jbc.272.31.19133. [DOI] [PubMed] [Google Scholar]
  11. Nishijima M., Kuge O., Akamatsu Y. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation. J Biol Chem. 1986 May 5;261(13):5784–5789. [PubMed] [Google Scholar]
  12. Saito K., Nishijima M., Kuge O. Genetic evidence that phosphatidylserine synthase II catalyzes the conversion of phosphatidylethanolamine to phosphatidylserine in Chinese hamster ovary cells. J Biol Chem. 1998 Jul 3;273(27):17199–17205. doi: 10.1074/jbc.273.27.17199. [DOI] [PubMed] [Google Scholar]
  13. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stone S. J., Cui Z., Vance J. E. Cloning and expression of mouse liver phosphatidylserine synthase-1 cDNA. Overexpression in rat hepatoma cells inhibits the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis. J Biol Chem. 1998 Mar 27;273(13):7293–7302. doi: 10.1074/jbc.273.13.7293. [DOI] [PubMed] [Google Scholar]
  15. Suzuki T. T., Kanfer J. N. Purification and properties of an ethanolamine-serine base exchange enzyme of rat brain microsomes. J Biol Chem. 1985 Feb 10;260(3):1394–1399. [PubMed] [Google Scholar]
  16. Vance J. E., Vance D. E. Does rat liver Golgi have the capacity to synthesize phospholipids for lipoprotein secretion? J Biol Chem. 1988 Apr 25;263(12):5898–5909. [PubMed] [Google Scholar]
  17. Voelker D. R., Frazier J. L. Isolation and characterization of a Chinese hamster ovary cell line requiring ethanolamine or phosphatidylserine for growth and exhibiting defective phosphatidylserine synthase activity. J Biol Chem. 1986 Jan 25;261(3):1002–1008. [PubMed] [Google Scholar]
  18. Voelker D. R. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells. Proc Natl Acad Sci U S A. 1984 May;81(9):2669–2673. doi: 10.1073/pnas.81.9.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhou X., Arthur G. Improved procedures for the determination of lipid phosphorus by malachite green. J Lipid Res. 1992 Aug;33(8):1233–1236. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES