Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):79–85.

cDNA cloning and characterization of guinea-pig leukotriene B4 receptor.

K Masuda 1, T Yokomizo 1, T Izumi 1, T Shimizu 1
PMCID: PMC1220439  PMID: 10432303

Abstract

The cDNA for leukotriene B(4) (LTB(4)) receptor (BLT) was cloned from a guinea-pig leucocyte cDNA library. The cloned receptor cDNA encodes 348 amino acid residues and shares 73% identity with the amino acid sequence of human BLT. Northern blot analysis showed the highest expression of the receptor mRNA in leucocytes, followed by lung and spleen. The membrane fractions of HEK-293 and Cos-7 cells transfected with the cDNA showed specific LTB(4)-binding activities, with K(d) values of 0.27 and 0.17 nM respectively. Xenopus laevis oocytes injected with the cRNA of guinea-pig BLT showed LTB(4)-induced Cl(-) currents, indicating that the cloned receptor is functional. LTB(4) is metabolized to 20-hydroxy-LTB(4) and then to 20-carboxy-LTB(4), a transformation considered as a major inactivation pathway of the compound. Using the cloned receptor, we analysed the agonistic effects of LTB(4) and these two metabolites. 20-Carboxy-LTB(4) is a much weaker agonist, with a K(d) value higher than that of LTB(4) by three orders of magnitude, corresponding to a much weaker chemotactic activity. Although 20-hydroxy-LTB(4) is as potent as LTB(4) in inhibiting [(3)H]LTB(4) binding and cAMP formation, it is less potent than LTB(4) in the mobilization of intracellular Ca(2+) and the chemotaxis of Chinese hamster ovary cells expressing the guinea-pig BLT. The present study demonstrated that although LTB(4) and 20-hydroxy-LTB(4) bind to the receptor with similar affinities, they do differ in activating intracellular signalling.

Full Text

The Full Text of this article is available as a PDF (186.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen W. E., Zicha D., Ridley A. J., Jones G. E. A role for Cdc42 in macrophage chemotaxis. J Cell Biol. 1998 Jun 1;141(5):1147–1157. doi: 10.1083/jcb.141.5.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson T., Schlegel W., Monod A., Krause K. H., Stendahl O., Lew D. P. Leukotriene B4 stimulation of phagocytes results in the formation of inositol 1,4,5-trisphosphate. A second messenger for Ca2+ mobilization. Biochem J. 1986 Dec 1;240(2):333–340. doi: 10.1042/bj2400333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arai H., Tsou C. L., Charo I. F. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14495–14499. doi: 10.1073/pnas.94.26.14495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arora K. K., Sakai A., Catt K. J. Effects of second intracellular loop mutations on signal transduction and internalization of the gonadotropin-releasing hormone receptor. J Biol Chem. 1995 Sep 29;270(39):22820–22826. doi: 10.1074/jbc.270.39.22820. [DOI] [PubMed] [Google Scholar]
  5. Böhm S. K., Grady E. F., Bunnett N. W. Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. Biochem J. 1997 Feb 15;322(Pt 1):1–18. doi: 10.1042/bj3220001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng J. B., Cheng E. I., Kohi F., Townley R. G. [3H]leukotriene B4 binding to the guinea-pig spleen membrane preparation: a rich tissue source for a high-affinity leukotriene B4 receptor site. J Pharmacol Exp Ther. 1986 Jan;236(1):126–132. [PubMed] [Google Scholar]
  7. Cristol J. P., Provençal B., Borgeat P., Sirois P. Characterization of leukotriene B4 binding sites on guinea pig lung macrophages. J Pharmacol Exp Ther. 1988 Dec;247(3):1199–1203. [PubMed] [Google Scholar]
  8. Durieux M. E., Salafranca M. N., Lynch K. R., Moorman J. R. Lysophosphatidic acid induces a pertussis toxin-sensitive Ca(2+)-activated Cl- current in Xenopus laevis oocytes. Am J Physiol. 1992 Oct;263(4 Pt 1):C896–C900. doi: 10.1152/ajpcell.1992.263.4.C896. [DOI] [PubMed] [Google Scholar]
  9. Falcone R. C., Aharony D. Modulation of ligand binding to leukotriene B4 receptors on guinea pig lung membranes by sulfhydryl modifying reagents. J Pharmacol Exp Ther. 1990 Nov;255(2):565–571. [PubMed] [Google Scholar]
  10. Fernhout B. J., Dijcks F. A., Moolenaar W. H., Ruigt G. S. Lysophosphatidic acid induces inward currents in Xenopus laevis oocytes; evidence for an extracellular site of action. Eur J Pharmacol. 1992 Mar 24;213(2):313–315. doi: 10.1016/0014-2999(92)90698-4. [DOI] [PubMed] [Google Scholar]
  11. Ford-Hutchinson A. W., Bray M. A., Doig M. V., Shipley M. E., Smith M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980 Jul 17;286(5770):264–265. doi: 10.1038/286264a0. [DOI] [PubMed] [Google Scholar]
  12. Ford-Hutchinson A. W. Leukotriene B4 in inflammation. Crit Rev Immunol. 1990;10(1):1–12. [PubMed] [Google Scholar]
  13. Gaudreau R., Le Gouill C., Métaoui S., Lemire S., Stankovà J., Rola-Pleszczynski M. Signalling through the leukotriene B4 receptor involves both alphai and alpha16, but not alphaq or alpha11 G-protein subunits. Biochem J. 1998 Oct 1;335(Pt 1):15–18. doi: 10.1042/bj3350015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gimbrone M. A., Jr, Brock A. F., Schafer A. I. Leukotriene B4 stimulates polymorphonuclear leukocyte adhesion to cultured vascular endothelial cells. J Clin Invest. 1984 Oct;74(4):1552–1555. doi: 10.1172/JCI111570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gohla A., Harhammer R., Schultz G. The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J Biol Chem. 1998 Feb 20;273(8):4653–4659. doi: 10.1074/jbc.273.8.4653. [DOI] [PubMed] [Google Scholar]
  16. Gomeza J., Joly C., Kuhn R., Knöpfel T., Bockaert J., Pin J. P. The second intracellular loop of metabotropic glutamate receptor 1 cooperates with the other intracellular domains to control coupling to G-proteins. J Biol Chem. 1996 Jan 26;271(4):2199–2205. doi: 10.1074/jbc.271.4.2199. [DOI] [PubMed] [Google Scholar]
  17. Guo Z., Liliom K., Fischer D. J., Bathurst I. C., Tomei L. D., Kiefer M. C., Tigyi G. Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14367–14372. doi: 10.1073/pnas.93.25.14367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  19. Honda Z., Nakamura M., Miki I., Minami M., Watanabe T., Seyama Y., Okado H., Toh H., Ito K., Miyamoto T. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature. 1991 Jan 24;349(6307):342–346. doi: 10.1038/349342a0. [DOI] [PubMed] [Google Scholar]
  20. Hoover R. L., Karnovsky M. J., Austen K. F., Corey E. J., Lewis R. A. Leukotriene B4 action on endothelium mediates augmented neutrophil/endothelial adhesion. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2191–2193. doi: 10.1073/pnas.81.7.2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huang W. W., Garcia-Zepeda E. A., Sauty A., Oettgen H. C., Rothenberg M. E., Luster A. D. Molecular and biological characterization of the murine leukotriene B4 receptor expressed on eosinophils. J Exp Med. 1998 Sep 21;188(6):1063–1074. doi: 10.1084/jem.188.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liliom K., Murakami-Murofushi K., Kobayashi S., Murofushi H., Tigyi G. Xenopus oocytes express multiple receptors for LPA-like lipid mediators. Am J Physiol. 1996 Mar;270(3 Pt 1):C772–C777. doi: 10.1152/ajpcell.1996.270.3.C772. [DOI] [PubMed] [Google Scholar]
  23. Littman D. R. Chemokine receptors: keys to AIDS pathogenesis? Cell. 1998 May 29;93(5):677–680. doi: 10.1016/s0092-8674(00)81429-4. [DOI] [PubMed] [Google Scholar]
  24. Mackay D. J., Hall A. Rho GTPases. J Biol Chem. 1998 Aug 14;273(33):20685–20688. doi: 10.1074/jbc.273.33.20685. [DOI] [PubMed] [Google Scholar]
  25. Montero M., Garcia-Sancho J., Alverez J. Chemotactic peptide down-regulation of calcium mobilization induced by platelet-activating factor and by leukotriene B4 in human neutrophils is uncovered by protein phosphatase inhibitors. Biochem J. 1994 Oct 15;303(Pt 2):559–566. doi: 10.1042/bj3030559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neptune E. R., Bourne H. R. Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14489–14494. doi: 10.1073/pnas.94.26.14489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Newsholme S. J., Griswold D. E., Schwartz L. Conjunctival leukocyte infiltration evoked by leukotrienes: differing responses among rodent species. J Lipid Mediat Cell Signal. 1994 May;9(3):197–203. [PubMed] [Google Scholar]
  28. Ng C. F., Sun F. F., Taylor B. M., Wolin M. S., Wong P. Y. Functional properties of guinea pig eosinophil leukotriene B4 receptor. J Immunol. 1991 Nov 1;147(9):3096–3103. [PubMed] [Google Scholar]
  29. Owman C., Garzino-Demo A., Cocchi F., Popovic M., Sabirsh A., Gallo R. C. The leukotriene B4 receptor functions as a novel type of coreceptor mediating entry of primary HIV-1 isolates into CD4-positive cells. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9530–9534. doi: 10.1073/pnas.95.16.9530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Palmblad J., Gyllenhammar H., Lindgren J. A., Malmsten C. L. Effects of leukotrienes and f-Met-Leu-Phe on oxidative metabolism of neutrophils and eosinophils. J Immunol. 1984 Jun;132(6):3041–3045. [PubMed] [Google Scholar]
  31. Quick M. W., Simon M. I., Davidson N., Lester H. A., Aragay A. M. Differential coupling of G protein alpha subunits to seven-helix receptors expressed in Xenopus oocytes. J Biol Chem. 1994 Dec 2;269(48):30164–30172. [PubMed] [Google Scholar]
  32. Rae S. A., Smith M. J. The stimulation of lysosomal enzyme secretion from human polymorphonuclear leucocytes by leukotriene B4. J Pharm Pharmacol. 1981 Sep;33(9):616–617. doi: 10.1111/j.2042-7158.1981.tb13884.x. [DOI] [PubMed] [Google Scholar]
  33. Rollins B. J. Chemokines. Blood. 1997 Aug 1;90(3):909–928. [PubMed] [Google Scholar]
  34. Saad M., Wong K. Specific binding of leukotriene B4 to guinea pig lung membranes. Biochem Biophys Res Commun. 1987 Feb 27;143(1):364–371. doi: 10.1016/0006-291x(87)90674-7. [DOI] [PubMed] [Google Scholar]
  35. Scheer A., Fanelli F., Costa T., De Benedetti P. G., Cotecchia S. Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J. 1996 Jul 15;15(14):3566–3578. [PMC free article] [PubMed] [Google Scholar]
  36. Schepers T. M., Brier M. E., McLeish K. R. Quantitative and qualitative differences in guanine nucleotide binding protein activation by formyl peptide and leukotriene B4 receptors. J Biol Chem. 1992 Jan 5;267(1):159–165. [PubMed] [Google Scholar]
  37. Schepers T. M., McLeish K. R. Differential cholera-toxin- and pertussis-toxin-catalysed ADP-ribosylation of G-proteins coupled to formyl-peptide and leukotriene B4 receptors. Biochem J. 1993 Jan 15;289(Pt 2):469–473. doi: 10.1042/bj2890469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Serhan C. N., Haeggström J. Z., Leslie C. C. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 1996 Aug;10(10):1147–1158. doi: 10.1096/fasebj.10.10.8751717. [DOI] [PubMed] [Google Scholar]
  39. Serhan C. N., Radin A., Smolen J. E., Korchak H., Samuelsson B., Weissmann G. Leukotriene B4 is a complete secretagogue in human neutrophils: a kinetic analysis. Biochem Biophys Res Commun. 1982 Aug;107(3):1006–1012. doi: 10.1016/0006-291x(82)90622-2. [DOI] [PubMed] [Google Scholar]
  40. Shak S., Goldstein I. M. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. J Biol Chem. 1984 Aug 25;259(16):10181–10187. [PubMed] [Google Scholar]
  41. Takano T., Honda Z., Sakanaka C., Izumi T., Kameyama K., Haga K., Haga T., Kurokawa K., Shimizu T. Role of cytoplasmic tail phosphorylation sites of platelet-activating factor receptor in agonist-induced desensitization. J Biol Chem. 1994 Sep 2;269(35):22453–22458. [PubMed] [Google Scholar]
  42. Wess J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 1997 Apr;11(5):346–354. [PubMed] [Google Scholar]
  43. Wheelan P., Hankin J. A., Bilir B., Guenette D., Murphy R. C. Metabolic transformations of leukotriene B4 in primary cultures of human hepatocytes. J Pharmacol Exp Ther. 1999 Jan;288(1):326–334. [PubMed] [Google Scholar]
  44. Winkler J. D., Sarau H. M., Foley J. J., Mong S., Crooke S. T. Leukotriene B4-induced homologous desensitization of calcium mobilization and phosphoinositide metabolism in U-937 cells. J Pharmacol Exp Ther. 1988 Jul;246(1):204–210. [PubMed] [Google Scholar]
  45. Yokomizo T., Izumi T., Chang K., Takuwa Y., Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature. 1997 Jun 5;387(6633):620–624. doi: 10.1038/42506. [DOI] [PubMed] [Google Scholar]
  46. Yokomizo T., Izumi T., Takahashi T., Kasama T., Kobayashi Y., Sato F., Taketani Y., Shimizu T. Enzymatic inactivation of leukotriene B4 by a novel enzyme found in the porcine kidney. Purification and properties of leukotriene B4 12-hydroxydehydrogenase. J Biol Chem. 1993 Aug 25;268(24):18128–18135. [PubMed] [Google Scholar]
  47. Yokomizo T., Ogawa Y., Uozumi N., Kume K., Izumi T., Shimizu T. cDNA cloning, expression, and mutagenesis study of leukotriene B4 12-hydroxydehydrogenase. J Biol Chem. 1996 Feb 2;271(5):2844–2850. doi: 10.1074/jbc.271.5.2844. [DOI] [PubMed] [Google Scholar]
  48. de la Peña P., del Camino D., Pardo L. A., Domínguez P., Barros F. Gs couples thyrotropin-releasing hormone receptors expressed in Xenopus oocytes to phospholipase C. J Biol Chem. 1995 Feb 24;270(8):3554–3559. doi: 10.1074/jbc.270.8.3554. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES