Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):87–96.

Endothelin-1 activates p38 mitogen-activated protein kinase and cytosolic phospholipase A2 in cat iris sphincter smooth muscle cells.

S Husain 1, A A Abdel-Latif 1
PMCID: PMC1220440  PMID: 10432304

Abstract

We have shown previously that cytosolic phospholipase A(2) (cPLA(2)) is responsible for endothelin-1-induced release of arachidonic acid for prostaglandin synthesis in cat iris sphincter smooth muscle (CISM) cells [Husain and Abdel-Latif (1998) Biochim. Biophys. Acta 1392, 127-144]. Here we show that p38 mitogen-activated protein (MAP) kinase, but not p42/p44 MAP kinases, plays an important role in the phosphorylation and activation of cPLA(2) in endothelin-1-stimulated CISM cells. This conclusion is supported by the following findings. Both p38 MAP kinase and p42/p44 MAP kinases were present in the CISM cells and both were activated by endothelin-1. SB203580, a potent specific inhibitor of p38 MAP kinase, but not the p42/p44 MAP kinases specific inhibitor, PD98059, markedly suppressed endothelin-1-enhanced cPLA(2) phosphorylation, cPLA(2) activity and arachidonic acid release. The addition of endothelin-1 resulted in the phosphorylation and activation of cPLA(2). Endothelin-1 stimulated p38 MAP kinase activity in a time- and concentration-dependent manner, and these effects were mediated through the endothelin-A receptor subtype. The protein kinase C (PKC) inhibitor, RO 31-8220, had no inhibitory effect on endothelin-1-induced p38 MAP kinase activation, suggesting that endothelin-1 activation of p38 MAP kinase is independent of PKC. Pertussis toxin inhibited both endothelin-1 and mastoparan stimulation of p38 MAP kinase activity and arachidonic acid release. The inhibitory effects of pertussis toxin are not mediated through cAMP formation. Mastoparan-stimulated [(3)H]arachidonic acid release and cPLA(2) activation was inhibited by SB203580, but not by RO 31-8220. These data suggest that endothelin-1 binds to the endothelin-A receptor to activate the Gi-protein which, through a series of kinases, leads to the activation of p38 MAP kinase and subsequently to phosphorylation and activation of cPLA(2). Activation of cPLA(2) leads to the liberation of arachidonic acid from membrane phospholipids. The ability of the activated endothelin-A receptor, which is coupled to both Gq- and Gi-proteins, to recruit and activate this complex signal transduction pathway remains to be elucidated. Further studies on the mechanism of these relationships could provide important information about the functions of p38 MAP kinase in smooth muscle.

Full Text

The Full Text of this article is available as a PDF (230.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A., Zhang Y. W. Species differences in the effects of endothelin-1 on myo-inositol trisphosphate accumulation, cyclic AMP formation and contraction of isolated iris sphincter of rabbit and other species. Invest Ophthalmol Vis Sci. 1991 Jul;32(8):2432–2438. [PubMed] [Google Scholar]
  2. Abdel-Latif A. A., Zhang Y., Yousufzai S. Y. Endothelin-1 stimulates the release of arachidonic acid and prostaglandins in rabbit iris sphincter smooth muscle: activation of phospholipase A2. Curr Eye Res. 1991 Mar;10(3):259–265. doi: 10.3109/02713689109003448. [DOI] [PubMed] [Google Scholar]
  3. Burke J. R., Davern L. B., Gregor K. R., Todderud G., Alford J. G., Tramposch K. M. Phosphorylation and calcium influx are not sufficient for the activation of cytosolic phospholipase A2 in U937 cells: requirement for a Gi alpha-type G-protein. Biochim Biophys Acta. 1997 Sep 5;1341(2):223–237. doi: 10.1016/s0167-4838(97)00085-x. [DOI] [PubMed] [Google Scholar]
  4. Burke J. R., Davern L. B., Gregor K. R., Todderud G., Alford J. G., Tramposch K. M. Phosphorylation and calcium influx are not sufficient for the activation of cytosolic phospholipase A2 in U937 cells: requirement for a Gi alpha-type G-protein. Biochim Biophys Acta. 1997 Sep 5;1341(2):223–237. doi: 10.1016/s0167-4838(97)00085-x. [DOI] [PubMed] [Google Scholar]
  5. Börsch-Haubold A. G., Kramer R. M., Watson S. P. Cytosolic phospholipase A2 is phosphorylated in collagen- and thrombin-stimulated human platelets independent of protein kinase C and mitogen-activated protein kinase. J Biol Chem. 1995 Oct 27;270(43):25885–25892. doi: 10.1074/jbc.270.43.25885. [DOI] [PubMed] [Google Scholar]
  6. Börsch-Haubold A. G., Kramer R. M., Watson S. P. Phosphorylation and activation of cytosolic phospholipase A2 by 38-kDa mitogen-activated protein kinase in collagen-stimulated human platelets. Eur J Biochem. 1997 May 1;245(3):751–759. doi: 10.1111/j.1432-1033.1997.t01-1-00751.x. [DOI] [PubMed] [Google Scholar]
  7. Börsch-Haubold A. G. Regulation of cytosolic phospholipase A2 by phosphorylation. Biochem Soc Trans. 1998 Aug;26(3):350–354. doi: 10.1042/bst0260350. [DOI] [PubMed] [Google Scholar]
  8. Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell. 1991 Jun 14;65(6):1043–1051. doi: 10.1016/0092-8674(91)90556-e. [DOI] [PubMed] [Google Scholar]
  9. Cuenda A., Rouse J., Doza Y. N., Meier R., Cohen P., Gallagher T. F., Young P. R., Lee J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995 May 8;364(2):229–233. doi: 10.1016/0014-5793(95)00357-f. [DOI] [PubMed] [Google Scholar]
  10. Frandsen E. K., Krishna G. A simple ultrasensitive method for the assay of cyclic AMP and cyclic GMP in tissues. Life Sci. 1976 Mar 1;18(5):529–541. doi: 10.1016/0024-3205(76)90331-3. [DOI] [PubMed] [Google Scholar]
  11. Gordon R. D., Leighton I. A., Campbell D. G., Cohen P., Creaney A., Wilton D. C., Masters D. J., Ritchie G. A., Mott R., Taylor I. W. Cloning and expression of cystolic phospholipase A2 (cPLA2) and a naturally occurring variant. Phosphorylation of Ser505 of recombinant cPLA2 by p42 mitogen-activated protein kinase results in an increase in specific activity. Eur J Biochem. 1996 Jun 15;238(3):690–697. doi: 10.1111/j.1432-1033.1996.0690w.x. [DOI] [PubMed] [Google Scholar]
  12. Halenda S. P., Zavoico G. B., Feinstein M. B. Phorbol esters and oleoyl acetoyl glycerol enhance release of arachidonic acid in platelets stimulated by Ca2+ ionophore A23187. J Biol Chem. 1985 Oct 15;260(23):12484–12491. [PubMed] [Google Scholar]
  13. Hunt T. W., Carroll R. C., Peralta E. G. Heterotrimeric G proteins containing G alpha i3 regulate multiple effector enzymes in the same cell. Activation of phospholipases C and A2 and inhibition of adenylyl cyclase. J Biol Chem. 1994 Nov 25;269(47):29565–29570. [PubMed] [Google Scholar]
  14. Husain S., Abdel-Latif A. A. Protein kinase C isoforms in iris sphincter smooth muscle: differential effects of phorbol ester on contraction and cAMP accumulation are species specific. Curr Eye Res. 1996 Mar;15(3):329–334. doi: 10.3109/02713689609007628. [DOI] [PubMed] [Google Scholar]
  15. Husain S., Abdel-Latif A. A. Role of protein kinase C alpha in endothelin-1 stimulation of cytosolic phospholipase A2 and arachidonic acid release in cultured cat iris sphincter smooth muscle cells. Biochim Biophys Acta. 1998 May 20;1392(1):127–144. doi: 10.1016/s0005-2760(98)00011-3. [DOI] [PubMed] [Google Scholar]
  16. Jelsema C. L., Axelrod J. Stimulation of phospholipase A2 activity in bovine rod outer segments by the beta gamma subunits of transducin and its inhibition by the alpha subunit. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3623–3627. doi: 10.1073/pnas.84.11.3623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kameshita I., Fujisawa H. A sensitive method for detection of calmodulin-dependent protein kinase II activity in sodium dodecyl sulfate-polyacrylamide gel. Anal Biochem. 1989 Nov 15;183(1):139–143. doi: 10.1016/0003-2697(89)90181-4. [DOI] [PubMed] [Google Scholar]
  18. Kramer R. M., Roberts E. F., Hyslop P. A., Utterback B. G., Hui K. Y., Jakubowski J. A. Differential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin receptor agonist peptide in human platelets. Evidence for activation of cPLA2 independent of the mitogen-activated protein kinases ERK1/2. J Biol Chem. 1995 Jun 16;270(24):14816–14823. doi: 10.1074/jbc.270.24.14816. [DOI] [PubMed] [Google Scholar]
  19. Kramer R. M., Roberts E. F., Strifler B. A., Johnstone E. M. Thrombin induces activation of p38 MAP kinase in human platelets. J Biol Chem. 1995 Nov 17;270(46):27395–27398. doi: 10.1074/jbc.270.46.27395. [DOI] [PubMed] [Google Scholar]
  20. Kramer R. M., Roberts E. F., Um S. L., Börsch-Haubold A. G., Watson S. P., Fisher M. J., Jakubowski J. A. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem. 1996 Nov 1;271(44):27723–27729. doi: 10.1074/jbc.271.44.27723. [DOI] [PubMed] [Google Scholar]
  21. Kramer R. M., Stephenson D. T., Roberts E. F., Clemens J. A. Cytosolic phospholipase A2 (cPLA2) and lipid mediator release in the brain. J Lipid Mediat Cell Signal. 1996 Sep;14(1-3):3–7. doi: 10.1016/0929-7855(96)01501-5. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lin L. L., Lin A. Y., Knopf J. L. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6147–6151. doi: 10.1073/pnas.89.13.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993 Jan 29;72(2):269–278. doi: 10.1016/0092-8674(93)90666-e. [DOI] [PubMed] [Google Scholar]
  25. Masaki T., Yanagisawa M., Goto K. Physiology and pharmacology of endothelins. Med Res Rev. 1992 Jul;12(4):391–421. doi: 10.1002/med.2610120405. [DOI] [PubMed] [Google Scholar]
  26. Nemenoff R. A., Winitz S., Qian N. X., Van Putten V., Johnson G. L., Heasley L. E. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem. 1993 Jan 25;268(3):1960–1964. [PubMed] [Google Scholar]
  27. Pang I. H., Yorio T. Ocular actions of endothelins. Proc Soc Exp Biol Med. 1997 May;215(1):21–34. doi: 10.3181/00379727-215-44110. [DOI] [PubMed] [Google Scholar]
  28. Qiu Z. H., Leslie C. C. Protein kinase C-dependent and -independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J Biol Chem. 1994 Jul 29;269(30):19480–19487. [PubMed] [Google Scholar]
  29. Roshak A., Sathe G., Marshall L. A. Suppression of monocyte 85-kDa phospholipase A2 by antisense and effects on endotoxin-induced prostaglandin biosynthesis. J Biol Chem. 1994 Oct 21;269(42):25999–26005. [PubMed] [Google Scholar]
  30. Ross E. M., Higashijima T. Regulation of G-protein activation by mastoparans and other cationic peptides. Methods Enzymol. 1994;237:26–37. doi: 10.1016/s0076-6879(94)37050-8. [DOI] [PubMed] [Google Scholar]
  31. Rubanyi G. M., Polokoff M. A. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 1994 Sep;46(3):325–415. [PubMed] [Google Scholar]
  32. Sokolovsky M. Endothelin receptor heterogeneity, G-proteins, and signaling via cAMP and cGMP cascades. Cell Mol Neurobiol. 1995 Oct;15(5):561–571. doi: 10.1007/BF02071317. [DOI] [PubMed] [Google Scholar]
  33. Sugden P. H., Clerk A. Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signal. 1997 Aug;9(5):337–351. doi: 10.1016/s0898-6568(96)00191-x. [DOI] [PubMed] [Google Scholar]
  34. Waterman W. H., Molski T. F., Huang C. K., Adams J. L., Sha'afi R. I. Tumour necrosis factor-alpha-induced phosphorylation and activation of cytosolic phospholipase A2 are abrogated by an inhibitor of the p38 mitogen-activated protein kinase cascade in human neutrophils. Biochem J. 1996 Oct 1;319(Pt 1):17–20. doi: 10.1042/bj3190017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Waterman W. H., Sha'afi R. I. A mitogen-activated protein kinase independent pathway involved in the phosphorylation and activation of cytosolic phospholipase A2 in human neutrophils stimulated with tumor necrosis factor-alpha. Biochem Biophys Res Commun. 1995 Apr 6;209(1):271–278. doi: 10.1006/bbrc.1995.1499. [DOI] [PubMed] [Google Scholar]
  36. Wheeler-Jones C., Abu-Ghazaleh R., Cospedal R., Houliston R. A., Martin J., Zachary I. Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett. 1997 Dec 22;420(1):28–32. doi: 10.1016/s0014-5793(97)01481-6. [DOI] [PubMed] [Google Scholar]
  37. Wheeler-Jones C., Abu-Ghazaleh R., Cospedal R., Houliston R. A., Martin J., Zachary I. Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett. 1997 Dec 22;420(1):28–32. doi: 10.1016/s0014-5793(97)01481-6. [DOI] [PubMed] [Google Scholar]
  38. Xing M., Mattera R. Phosphorylation-dependent regulation of phospholipase A2 by G-proteins and Ca2+ in HL60 granulocytes. J Biol Chem. 1992 Dec 25;267(36):25966–25975. [PubMed] [Google Scholar]
  39. Yamauchi J., Nagao M., Kaziro Y., Itoh H. Activation of p38 mitogen-activated protein kinase by signaling through G protein-coupled receptors. Involvement of Gbetagamma and Galphaq/11 subunits. J Biol Chem. 1997 Oct 31;272(44):27771–27777. doi: 10.1074/jbc.272.44.27771. [DOI] [PubMed] [Google Scholar]
  40. Zhang Y., Abdel-Latif A. A. Activation of phospholipase D by endothelin-1 and other pharmacological agents in rabbit iris sphincter smooth muscle. Cell Signal. 1992 Nov;4(6):777–786. doi: 10.1016/0898-6568(92)90058-g. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES