Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):105–110.

Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes.

A C Fernandes 1, C M Fontes 1, H J Gilbert 1, G P Hazlewood 1, T H Fernandes 1, L M Ferreira 1
PMCID: PMC1220442  PMID: 10432306

Abstract

Clostridium thermocellum produces a consortium of plant-cell-wall hydrolases that form a cell-bound multi-enzyme complex called the cellulosome. In the present study two similar xylanase genes, xynU and xynV, were cloned from C. thermocellum strain YS and sequenced. The deduced primary structures of both xylanases, xylanase U (XylU) and xylanase V (XylV), were homologous with the previously characterized xylanases from C. thermocellum strain F1. Truncated derivatives of XylV were produced and their biochemical properties were characterized. The xylanases were shown to be remarkably thermostable and resistant to proteolytic inactivation. The catalytic domains hydrolysed xylan by a typical endo-mode of action. The type VI cellulose-binding domain (CBD) homologue of XylV bound xylan and, to a smaller extent, Avicel and acid-swollen cellulose. Deletion of the CBD from XylV abolished the capacity of the enzymes to bind polysaccharides. The polysaccharide-binding domain was shown to have a key role in the hydrolysis of insoluble substrates by XylV. The C-terminal domain of XylV, which is absent from XylU, removed acetyl groups from acetylated xylan and acted in synergy with the glycosyl hydrolase catalytic domain of the enzyme to elicit the hydrolysis of acetylated xylan.

Full Text

The Full Text of this article is available as a PDF (133.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black G. W., Rixon J. E., Clarke J. H., Hazlewood G. P., Ferreira L. M., Bolam D. N., Gilbert H. J. Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J Biotechnol. 1997 Sep 16;57(1-3):59–69. doi: 10.1016/s0168-1656(97)00089-8. [DOI] [PubMed] [Google Scholar]
  2. Béguin P., Alzari P. M. The cellulosome of Clostridium thermocellum. Biochem Soc Trans. 1998 May;26(2):178–185. doi: 10.1042/bst0260178. [DOI] [PubMed] [Google Scholar]
  3. Ciruela A., Gilbert H. J., Ali B. R., Hazlewood G. P. Synergistic interaction of the cellulosome integrating protein (CipA) from Clostridium thermocellum with a cellulosomal endoglucanase. FEBS Lett. 1998 Jan 30;422(2):221–224. doi: 10.1016/s0014-5793(97)01590-1. [DOI] [PubMed] [Google Scholar]
  4. Durrant A. J., Hall J., Hazlewood G. P., Gilbert H. J. The non-catalytic C-terminal region of endoglucanase E from Clostridium thermocellum contains a cellulose-binding domain. Biochem J. 1991 Jan 15;273(Pt 2):289–293. doi: 10.1042/bj2730289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferreira L. M., Hazlewood G. P., Barker P. J., Gilbert H. J. The cellodextrinase from Pseudomonas fluorescens subsp. cellulosa consists of multiple functional domains. Biochem J. 1991 Nov 1;279(Pt 3):793–799. doi: 10.1042/bj2790793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferreira L. M., Wood T. M., Williamson G., Faulds C., Hazlewood G. P., Black G. W., Gilbert H. J. A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. Biochem J. 1993 Sep 1;294(Pt 2):349–355. doi: 10.1042/bj2940349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fontes C. M., Clarke J. H., Hazlewood G. P., Fernandes T. H., Gilbert H. J., Ferreira L. M. Identification of tandemly repeated type VI cellulose-binding domains in an endoglucanase from the aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol. 1998 May;49(5):552–559. doi: 10.1007/s002530051212. [DOI] [PubMed] [Google Scholar]
  9. Fontes C. M., Hazlewood G. P., Morag E., Hall J., Hirst B. H., Gilbert H. J. Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J. 1995 Apr 1;307(Pt 1):151–158. doi: 10.1042/bj3070151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grépinet O., Chebrou M. C., Béguin P. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J Bacteriol. 1988 Oct;170(10):4582–4588. doi: 10.1128/jb.170.10.4582-4588.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hayashi H., Takagi K. I., Fukumura M., Kimura T., Karita S., Sakka K., Ohmiya K. Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J Bacteriol. 1997 Jul;179(13):4246–4253. doi: 10.1128/jb.179.13.4246-4253.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayashi H., Takehara M., Hattori T., Kimura T., Karita S., Sakka K., Ohmiya K. Nucleotide sequences of two contiguous and highly homologous xylanase genes xynA and xynB and characterization of XynA from Clostridium thermocellum. Appl Microbiol Biotechnol. 1999 Mar;51(3):348–357. doi: 10.1007/s002530051401. [DOI] [PubMed] [Google Scholar]
  13. Jung K. H., Lee K. M., Kim H., Yoon K. H., Park S. H., Pack M. Y. Cloning and expression of a Clostridium thermocellum xylanase gene in Escherichia coli. Biochem Mol Biol Int. 1998 Feb;44(2):283–292. doi: 10.1080/15216549800201302. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lemaire M., Miras I., Gounon P., Béguin P. Identification of a region responsible for binding to the cell wall within the S-layer protein of Clostridium thermocellum. Microbiology. 1998 Jan;144(Pt 1):211–217. doi: 10.1099/00221287-144-1-211. [DOI] [PubMed] [Google Scholar]
  16. Sakka K., Kojima Y., Kondo T., Karita S., Ohmiya K., Shimada K. Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: identification of catalytic and cellulose binding domains. Biosci Biotechnol Biochem. 1993 Feb;57(2):273–277. doi: 10.1271/bbb.57.273. [DOI] [PubMed] [Google Scholar]
  17. Salamitou S., Raynaud O., Lemaire M., Coughlan M., Béguin P., Aubert J. P. Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. J Bacteriol. 1994 May;176(10):2822–2827. doi: 10.1128/jb.176.10.2822-2827.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tomme P., Warren R. A., Gilkes N. R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1–81. doi: 10.1016/s0065-2911(08)60143-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES