Abstract
Damage to the endothelium by reactive oxygen species favours atherogenesis. Such damage can be prevented by selenium, which is thought to exert its actions through the expression of selenoproteins. The family of glutathione peroxidases (GPXs) may have antioxidant roles in the endothelium but other intracellular and extracellular selenoproteins with antioxidant actions may also be important. The selenoproteins expressed by cultured human umbilical-vein endothelial cells (HUVECs) were labelled with [(75)Se]selenite and separated using SDS/PAGE. HUVECs secreted no extracellular selenoproteins. There were distinct differences between the intracellular selenoprotein profile of (75)Se-labelled HUVECs and those of other tissues. A single selenoprotein with a molecular mass of 58 kDa accounted for approx. 43% of the intracellular (75)Se-labelled proteins in HUVECs. This protein was identified by Western blotting as the redox-active lipid-hydroperoxide-detoxifying selenoprotein, thioredoxin reductase (TR). TR expression in HUVECs was down-regulated by transiently exposing cells to the phorbol ester PMA for periods as short as 1 min. However, there was a delay of 48 h after PMA exposure before maximal down-regulation of TR was observed. The protein kinase C (PKC) inhibitor bisindolylmaleimide I hydrochloride had no effect on TR expression when added alone, but the agent prevented the down-regulation of TR expression seen with PMA. The calcium ionophore A23187 increased TR expression in HUVECs after a 12-h exposure, but the maximal effect was only observed after a 35-h exposure. These findings suggest that TR may be an important factor in the known ability of Se to protect HUVECs from peroxidative damage. Furthermore, the results also suggest that TR expression can be negatively regulated through PKC. It is possible that TR expression may be positively regulated by the calcium-signalling cascade, although TR induction by A23187 may be due to toxicity.
Full Text
The Full Text of this article is available as a PDF (164.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur J. R., Beckett G. J. New metabolic roles for selenium. Proc Nutr Soc. 1994 Nov;53(3):615–624. doi: 10.1079/pns19940070. [DOI] [PubMed] [Google Scholar]
- Beech S. G., Walker S. W., Dorrance A. M., Arthur J. R., Nicol F., Lee D., Beckett G. J. The role of thyroidal type-I iodothyronine deiodinase in tri-iodothyronine production by human and sheep thyrocytes in primary culture. J Endocrinol. 1993 Mar;136(3):361–370. doi: 10.1677/joe.0.1360361. [DOI] [PubMed] [Google Scholar]
- Behne D., Hilmert H., Scheid S., Gessner H., Elger W. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta. 1988 Jul 14;966(1):12–21. doi: 10.1016/0304-4165(88)90123-7. [DOI] [PubMed] [Google Scholar]
- Berggren M., Gallegos A., Gasdaska J. R., Gasdaska P. Y., Warneke J., Powis G. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res. 1996 Nov-Dec;16(6B):3459–3466. [PubMed] [Google Scholar]
- Björnstedt M., Hamberg M., Kumar S., Xue J., Holmgren A. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem. 1995 May 19;270(20):11761–11764. doi: 10.1074/jbc.270.20.11761. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burk R. F., Hill K. E., Boeglin M. E., Ebner F. F., Chittum H. S. Selenoprotein P associates with endothelial cells in rat tissues. Histochem Cell Biol. 1997 Jul;108(1):11–15. doi: 10.1007/s004180050141. [DOI] [PubMed] [Google Scholar]
- Crosby A. J., Wahle K. W., Duthie G. G. Modulation of glutathione peroxidase activity in human vascular endothelial cells by fatty acids and the cytokine interleukin-1 beta. Biochim Biophys Acta. 1996 Oct 18;1303(3):187–192. doi: 10.1016/0005-2760(96)00093-8. [DOI] [PubMed] [Google Scholar]
- Das K. C., Lewis-Molock Y., White C. W. Elevation of manganese superoxide dismutase gene expression by thioredoxin. Am J Respir Cell Mol Biol. 1997 Dec;17(6):713–726. doi: 10.1165/ajrcmb.17.6.2809. [DOI] [PubMed] [Google Scholar]
- Emori T., Hirata Y., Ohta K., Kanno K., Eguchi S., Imai T., Shichiri M., Marumo F. Cellular mechanism of endothelin-1 release by angiotensin and vasopressin. Hypertension. 1991 Aug;18(2):165–170. doi: 10.1161/01.hyp.18.2.165. [DOI] [PubMed] [Google Scholar]
- Flohé L., Eisele B., Wendel A. Glutathion-Peroxidase. I. Reindarstellung und Molekulargewichtsbestimmungen. Hoppe Seylers Z Physiol Chem. 1971 Feb;352(2):151–158. [PubMed] [Google Scholar]
- Gallegos A., Berggren M., Gasdaska J. R., Powis G. Mechanisms of the regulation of thioredoxin reductase activity in cancer cells by the chemopreventive agent selenium. Cancer Res. 1997 Nov 1;57(21):4965–4970. [PubMed] [Google Scholar]
- Gladyshev V. N., Stadtman T. C., Hatfield D. L., Jeang K. T. Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):835–839. doi: 10.1073/pnas.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirata K., Kuroda R., Sakoda T., Katayama M., Inoue N., Suematsu M., Kawashima S., Yokoyama M. Inhibition of endothelial nitric oxide synthase activity by protein kinase C. Hypertension. 1995 Feb;25(2):180–185. doi: 10.1161/01.hyp.25.2.180. [DOI] [PubMed] [Google Scholar]
- Holmgren A., Björnstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199–208. doi: 10.1016/0076-6879(95)52023-6. [DOI] [PubMed] [Google Scholar]
- Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
- Howie A. F., Arthur J. R., Nicol F., Walker S. W., Beech S. G., Beckett G. J. Identification of a 57-kilodalton selenoprotein in human thyrocytes as thioredoxin reductase and evidence that its expression is regulated through the calcium-phosphoinositol signaling pathway. J Clin Endocrinol Metab. 1998 Jun;83(6):2052–2058. doi: 10.1210/jcem.83.6.4875. [DOI] [PubMed] [Google Scholar]
- Howie A. F., Walker S. W., Akesson B., Arthur J. R., Beckett G. J. Thyroidal extracellular glutathione peroxidase: a potential regulator of thyroid-hormone synthesis. Biochem J. 1995 Jun 15;308(Pt 3):713–717. doi: 10.1042/bj3080713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jornot L., Junod A. F. Differential regulation of glutathione peroxidase by selenomethionine and hyperoxia in endothelial cells. Biochem J. 1995 Mar 1;306(Pt 2):581–587. doi: 10.1042/bj3060581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jornot L., Junod A. F. Hyperoxia, unlike phorbol ester, induces glutathione peroxidase through a protein kinase C-independent mechanism. Biochem J. 1997 Aug 15;326(Pt 1):117–123. doi: 10.1042/bj3260117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May J. M., Mendiratta S., Hill K. E., Burk R. F. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem. 1997 Sep 5;272(36):22607–22610. doi: 10.1074/jbc.272.36.22607. [DOI] [PubMed] [Google Scholar]
- Ohgushi M., Kugiyama K., Fukunaga K., Murohara T., Sugiyama S., Miyamoto E., Yasue H. Protein kinase C inhibitors prevent impairment of endothelium-dependent relaxation by oxidatively modified LDL. Arterioscler Thromb. 1993 Oct;13(10):1525–1532. doi: 10.1161/01.atv.13.10.1525. [DOI] [PubMed] [Google Scholar]
- Rapoport B. Dog thyroid cells in monolayer tissue culture: adenosine 3', 5'-cyclic monophosphate response to thyrotropic hormone. Endocrinology. 1976 May;98(5):1189–1197. doi: 10.1210/endo-98-5-1189. [DOI] [PubMed] [Google Scholar]
- Ricetti M. M., Guidi G. C., Bellisola G., Marrocchella R., Rigo A., Perona G. Selenium enhances glutathione peroxidase activity and prostacyclin release in cultured human endothelial cells. Concurrent effects on mRNA levels. Biol Trace Elem Res. 1994 Oct-Nov;46(1-2):113–123. doi: 10.1007/BF02790072. [DOI] [PubMed] [Google Scholar]
- Santell L., Bartfeld N. S., Levin E. G. Identification of a protein transiently phosphorylated by activators of endothelial cell function as the heat-shock protein HSP27. A possible role for protein kinase C. Biochem J. 1992 Jun 15;284(Pt 3):705–710. doi: 10.1042/bj2840705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt K., Mayer B., Kukovetz W. R. Effect of calcium on endothelium-derived relaxing factor formation and cGMP levels in endothelial cells. Eur J Pharmacol. 1989 Nov 7;170(3):157–166. doi: 10.1016/0014-2999(89)90536-0. [DOI] [PubMed] [Google Scholar]
- Thomas J. P., Geiger P. G., Girotti A. W. Lethal damage to endothelial cells by oxidized low density lipoprotein: role of selenoperoxidases in cytoprotection against lipid hydroperoxide- and iron-mediated reactions. J Lipid Res. 1993 Mar;34(3):479–490. [PubMed] [Google Scholar]
- Villard E., Alonso A., Agrapart M., Challah M., Soubrier F. Induction of angiotensin I-converting enzyme transcription by a protein kinase C-dependent mechanism in human endothelial cells. J Biol Chem. 1998 Sep 25;273(39):25191–25197. doi: 10.1074/jbc.273.39.25191. [DOI] [PubMed] [Google Scholar]