Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):125–132.

Solution structure and dynamics of the A-T tract DNA decamer duplex d(GGTAATTACC)2: implications for recognition by minor groove binding drugs.

C E Bostock-Smith 1, C A Laughton 1, M S Searle 1
PMCID: PMC1220445  PMID: 10432309

Abstract

The structure of the DNA decamer duplex d(GGTAATTACC)(2) has been determined using NMR distance restraints and molecular dynamics simulations of 500 ps to 1 ns in aqueous solution at 300 K. Using both canonical A and canonical B starting structures [root-mean-square deviation (RMSD) 4.6 A; 1 A=10(-10) m], with and without experimental restraints, we show that all four simulations converge to a similar envelope of final conformations with B-like helical parameters (pairwise RMSD 1.27-2.03 A between time-averaged structures). While the two restrained simulations reach a stable trajectory after 300-400 ps, the unrestrained trajectories take longer to equilibrate. We have analysed the dynamic aspects of these structures (sugar pucker, helical twist, roll, propeller twist and groove width) and show that the minor groove width in the AATT core of the duplex fluctuates significantly, sampling both wide and narrow conformations. The structure does not have the highly pre-organized narrow minor groove generally regarded as essential for recognition and binding by small molecules, suggesting that ligand binding carries with it a significant component of 'induced-fit'. Our simulations show that there are significant differences in structure between the TpA step (where p=phosphate) and the ApA and ApT steps, where a large roll into the major groove at the TpA step appears to be an important factor in widening the minor groove at this position.

Full Text

The Full Text of this article is available as a PDF (238.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffinger P., Westhof E. Simulations of the molecular dynamics of nucleic acids. Curr Opin Struct Biol. 1998 Apr;8(2):227–236. doi: 10.1016/s0959-440x(98)80044-4. [DOI] [PubMed] [Google Scholar]
  2. Bostock-Smith C. E., Laughton C. A., Searle M. S. DNA minor groove recognition by a tetrahydropyrimidinium analogue of hoechst 33258: NMR and molecular dynamics studies of the complex with d(GGTAATTACC)2. Nucleic Acids Res. 1998 Apr 1;26(7):1660–1667. doi: 10.1093/nar/26.7.1660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brahms S., Fritsch V., Brahms J. G., Westhof E. Investigations on the dynamic structures of adenine- and thymine-containing DNA. J Mol Biol. 1992 Jan 20;223(2):455–476. doi: 10.1016/0022-2836(92)90664-6. [DOI] [PubMed] [Google Scholar]
  4. Cheatham T. E., 3rd, Kollman P. A. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J Mol Biol. 1996 Jun 14;259(3):434–444. doi: 10.1006/jmbi.1996.0330. [DOI] [PubMed] [Google Scholar]
  5. Coll M., Frederick C. A., Wang A. H., Rich A. A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8385–8389. doi: 10.1073/pnas.84.23.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickerson R. E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 1998 Apr 15;26(8):1906–1926. doi: 10.1093/nar/26.8.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickerson R. E., Drew H. R. Structure of a B-DNA dodecamer. II. Influence of base sequence on helix structure. J Mol Biol. 1981 Jul 15;149(4):761–786. doi: 10.1016/0022-2836(81)90357-0. [DOI] [PubMed] [Google Scholar]
  8. Duan Y., Wilkosz P., Crowley M., Rosenberg J. M. Molecular dynamics simulation study of DNA dodecamer d(CGCGAATTCGCG) in solution: conformation and hydration. J Mol Biol. 1997 Oct 3;272(4):553–572. doi: 10.1006/jmbi.1997.1247. [DOI] [PubMed] [Google Scholar]
  9. Embrey K. J., Searle M. S., Craik D. J. Interaction of Hoechst 33258 with the minor groove of the A + T-rich DNA duplex d(GGTAATTACC)2 studied in solution by NMR spectroscopy. Eur J Biochem. 1993 Feb 1;211(3):437–447. doi: 10.1111/j.1432-1033.1993.tb17569.x. [DOI] [PubMed] [Google Scholar]
  10. Geierstanger B. H., Wemmer D. E. Complexes of the minor groove of DNA. Annu Rev Biophys Biomol Struct. 1995;24:463–493. doi: 10.1146/annurev.bb.24.060195.002335. [DOI] [PubMed] [Google Scholar]
  11. Gorin A. A., Zhurkin V. B., Olson W. K. B-DNA twisting correlates with base-pair morphology. J Mol Biol. 1995 Mar 17;247(1):34–48. doi: 10.1006/jmbi.1994.0120. [DOI] [PubMed] [Google Scholar]
  12. Hagerman P. J. Straightening out the bends in curved DNA. Biochim Biophys Acta. 1992 Jun 15;1131(2):125–132. doi: 10.1016/0167-4781(92)90066-9. [DOI] [PubMed] [Google Scholar]
  13. Haq I., Ladbury J. E., Chowdhry B. Z., Jenkins T. C., Chaires J. B. Specific binding of hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J Mol Biol. 1997 Aug 15;271(2):244–257. doi: 10.1006/jmbi.1997.1170. [DOI] [PubMed] [Google Scholar]
  14. Kennedy M. A., Nuutero S. T., Davis J. T., Drobny G. P., Reid B. R. Mobility at the TpA cleavage site in the T3A3-containing AhaIII and PmeI restriction sequences. Biochemistry. 1993 Aug 10;32(31):8022–8035. doi: 10.1021/bi00082a025. [DOI] [PubMed] [Google Scholar]
  15. Kim J. L., Burley S. K. 1.9 A resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nat Struct Biol. 1994 Sep;1(9):638–653. doi: 10.1038/nsb0994-638. [DOI] [PubMed] [Google Scholar]
  16. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  17. Lu X. J., El Hassan M. A., Hunter C. A. Structure and conformation of helical nucleic acids: rebuilding program (SCHNArP). J Mol Biol. 1997 Oct 31;273(3):681–691. doi: 10.1006/jmbi.1997.1345. [DOI] [PubMed] [Google Scholar]
  18. McAteer K., Ellis P. D., Kennedy M. A. The effects of sequence context on base dynamics at TpA steps in DNA studied by NMR. Nucleic Acids Res. 1995 Oct 11;23(19):3962–3966. doi: 10.1093/nar/23.19.3962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nelson H. C., Finch J. T., Luisi B. F., Klug A. The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature. 1987 Nov 19;330(6145):221–226. doi: 10.1038/330221a0. [DOI] [PubMed] [Google Scholar]
  20. Patel D. J., Suri A. K., Jiang F., Jiang L., Fan P., Kumar R. A., Nonin S. Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol. 1997 Oct 10;272(5):645–664. doi: 10.1006/jmbi.1997.1281. [DOI] [PubMed] [Google Scholar]
  21. Pelton J. G., Wemmer D. E. Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5723–5727. doi: 10.1073/pnas.86.15.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Portugal J., Waring M. J. Assignment of DNA binding sites for 4',6-diamidine-2-phenylindole and bisbenzimide (Hoechst 33258). A comparative footprinting study. Biochim Biophys Acta. 1988 Feb 28;949(2):158–168. doi: 10.1016/0167-4781(88)90079-6. [DOI] [PubMed] [Google Scholar]
  23. Rice P. A. Making DNA do a U-turn: IHF and related proteins. Curr Opin Struct Biol. 1997 Feb;7(1):86–93. doi: 10.1016/s0959-440x(97)80011-5. [DOI] [PubMed] [Google Scholar]
  24. Rinkel L. J., Altona C. Conformational analysis of the deoxyribofuranose ring in DNA by means of sums of proton-proton coupling constants: a graphical method. J Biomol Struct Dyn. 1987 Feb;4(4):621–649. doi: 10.1080/07391102.1987.10507665. [DOI] [PubMed] [Google Scholar]
  25. Shatzky-Schwartz M., Arbuckle N. D., Eisenstein M., Rabinovich D., Bareket-Samish A., Haran T. E., Luisi B. F., Shakked Z. X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature. J Mol Biol. 1997 Apr 4;267(3):595–623. doi: 10.1006/jmbi.1996.0878. [DOI] [PubMed] [Google Scholar]
  26. Swaminathan S., Ichiye T., van Gunsteren W., Karplus M. Time dependence of atomic fluctuations in proteins: analysis of local and collective motions in bovine pancreatic trypsin inhibitor. Biochemistry. 1982 Oct 12;21(21):5230–5241. doi: 10.1021/bi00264a019. [DOI] [PubMed] [Google Scholar]
  27. Ulyanov N. B., Gorin A. A., Zhurkin V. B., Chen B. C., Sarma M. H., Sarma R. H. Systematic study of nuclear Overhauser effects vis-à-vis local helical parameters, sugar puckers, and glycosidic torsions in B DNA: insensitivity of NOE to local transitions in B DNA oligonucleotides due to internal structural compensations. Biochemistry. 1992 Apr 28;31(16):3918–3930. doi: 10.1021/bi00131a005. [DOI] [PubMed] [Google Scholar]
  28. Ulyanov N. B., James T. L. Statistical analysis of DNA duplex structural features. Methods Enzymol. 1995;261:90–120. doi: 10.1016/s0076-6879(95)61006-5. [DOI] [PubMed] [Google Scholar]
  29. Ulyanov N. B., Schmitz U., Kumar A., James T. L. Probability assessment of conformational ensembles: sugar repuckering in a DNA duplex in solution. Biophys J. 1995 Jan;68(1):13–24. doi: 10.1016/S0006-3495(95)80181-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wemmer D. E., Dervan P. B. Targeting the minor groove of DNA. Curr Opin Struct Biol. 1997 Jun;7(3):355–361. doi: 10.1016/s0959-440x(97)80051-6. [DOI] [PubMed] [Google Scholar]
  31. Werner M. H., Huth J. R., Gronenborn A. M., Clore G. M. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell. 1995 Jun 2;81(5):705–714. doi: 10.1016/0092-8674(95)90532-4. [DOI] [PubMed] [Google Scholar]
  32. Westhof E., Patel D. J. Nucleic acids. From self-assembly to induced-fit recognition. Curr Opin Struct Biol. 1997 Jun;7(3):305–309. doi: 10.1016/s0959-440x(97)80044-9. [DOI] [PubMed] [Google Scholar]
  33. Westhof E. Re-refinement of the B-dodecamer d(CGCGAATTCGCG) with a comparative analysis of the solvent in it and in the Z-hexamer d(5BrCG5BrCG5BrCG). J Biomol Struct Dyn. 1987 Dec;5(3):581–600. doi: 10.1080/07391102.1987.10506414. [DOI] [PubMed] [Google Scholar]
  34. White S., Szewczyk J. W., Turner J. M., Baird E. E., Dervan P. B. Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature. 1998 Jan 29;391(6666):468–471. doi: 10.1038/35106. [DOI] [PubMed] [Google Scholar]
  35. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]
  36. Yanagi K., Privé G. G., Dickerson R. E. Analysis of local helix geometry in three B-DNA decamers and eight dodecamers. J Mol Biol. 1991 Jan 5;217(1):201–214. doi: 10.1016/0022-2836(91)90620-l. [DOI] [PubMed] [Google Scholar]
  37. Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES