Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):133–141.

Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers.

A L Craig 1, L Burch 1, B Vojtesek 1, J Mikutowska 1, A Thompson 1, T R Hupp 1
PMCID: PMC1220446  PMID: 10432310

Abstract

The ability to separate the isoforms of human tumour suppressor protein p53 expressed in insect cells using heparin-Sepharose correlates with differences in the isoelectric point of p53, demonstrating that p53 can be heterogeneously modified and providing support for the use of insect cells as a model system for identifying novel signalling pathways that target p53. One p53 isoform that was reduced in its binding to the monoclonal antibody DO-1 could be stimulated in its binding to DO-1 by prior incubation with protein phosphatases, suggesting the presence of a previously unidentified N-terminal phosphorylation site capable of masking the DO-1 epitope. A synthetic peptide from the N-terminal domain of p53 containing phosphate at Ser(20) inhibited DO-1 binding, thus identifying the phosphorylation site responsible for DO-1 epitope masking. Monoclonal antibodies overlapping the DO-1 epitope were developed that are specific for phospho-Thr(18) (adjacent to the DO-1 epitope) and phospho-Ser(20) (within the DO-1 epitope) to determine whether direct evidence could be obtained for novel phosphorylation sites in human p53. A monoclonal antibody highly specific for phospho-Ser(20) detected significant phosphorylation of human p53 expressed in insect cells, whereas the relative proportion of p53 modified at Thr(18) was substantially lower. The relevance of these two novel phosphorylation sites to p53 regulation in human cells was made evident by the extensive phosphorylation of human p53 at Thr(18) and Ser(20) in a panel of human breast cancers with a wild-type p53 status. Phospho-Ser(20) or phospho-Thr(18) containing p53 peptides are as effective as the phospho-Ser(15) peptide at reducing mdm2 (mouse double minute 2) protein binding, indicating that the functional effects of these phosphorylation events might be to regulate the binding of heterologous proteins to p53. These results provide evidence in vivo for two novel phosphorylation sites within p53 at Ser(20) and Thr(18) that can affect p53 protein-protein interactions and indicate that some human cancers might have amplified one or more Ser(20) and Thr(18) kinase signalling cascades to modulate p53 activity.

Full Text

The Full Text of this article is available as a PDF (209.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E., Woelker B., Reed M., Wang P., Tegtmeyer P. Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol Cell Biol. 1997 Nov;17(11):6255–6264. doi: 10.1128/mcb.17.11.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banin S., Moyal L., Shieh S., Taya Y., Anderson C. W., Chessa L., Smorodinsky N. I., Prives C., Reiss Y., Shiloh Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998 Sep 11;281(5383):1674–1677. doi: 10.1126/science.281.5383.1674. [DOI] [PubMed] [Google Scholar]
  3. Bargonetti J., Manfredi J. J., Chen X., Marshak D. R., Prives C. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev. 1993 Dec;7(12B):2565–2574. doi: 10.1101/gad.7.12b.2565. [DOI] [PubMed] [Google Scholar]
  4. Bischoff J. R., Casso D., Beach D. Human p53 inhibits growth in Schizosaccharomyces pombe. Mol Cell Biol. 1992 Apr;12(4):1405–1411. doi: 10.1128/mcb.12.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blaydes J. P., Hupp T. R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998 Aug 27;17(8):1045–1052. doi: 10.1038/sj.onc.1202014. [DOI] [PubMed] [Google Scholar]
  6. Böttger A., Böttger V., Garcia-Echeverria C., Chène P., Hochkeppel H. K., Sampson W., Ang K., Howard S. F., Picksley S. M., Lane D. P. Molecular characterization of the hdm2-p53 interaction. J Mol Biol. 1997 Jun 27;269(5):744–756. doi: 10.1006/jmbi.1997.1078. [DOI] [PubMed] [Google Scholar]
  7. Cairns C. A., White R. J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 1998 Jun 1;17(11):3112–3123. doi: 10.1093/emboj/17.11.3112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Canman C. E., Lim D. S., Cimprich K. A., Taya Y., Tamai K., Sakaguchi K., Appella E., Kastan M. B., Siliciano J. D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998 Sep 11;281(5383):1677–1679. doi: 10.1126/science.281.5383.1677. [DOI] [PubMed] [Google Scholar]
  9. Casso D., Beach D. A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1996 Oct 16;252(5):518–529. doi: 10.1007/BF02172398. [DOI] [PubMed] [Google Scholar]
  10. Chesnokov I., Chu W. M., Botchan M. R., Schmid C. W. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol. 1996 Dec;16(12):7084–7088. doi: 10.1128/mcb.16.12.7084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cho Y., Gorina S., Jeffrey P. D., Pavletich N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994 Jul 15;265(5170):346–355. doi: 10.1126/science.8023157. [DOI] [PubMed] [Google Scholar]
  12. Davison T. S., Yin P., Nie E., Kay C., Arrowsmith C. H. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene. 1998 Aug 6;17(5):651–656. doi: 10.1038/sj.onc.1202062. [DOI] [PubMed] [Google Scholar]
  13. Fredersdorf S., Burns J., Milne A. M., Packham G., Fallis L., Gillett C. E., Royds J. A., Peston D., Hall P. A., Hanby A. M. High level expression of p27(kip1) and cyclin D1 in some human breast cancer cells: inverse correlation between the expression of p27(kip1) and degree of malignancy in human breast and colorectal cancers. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6380–6385. doi: 10.1073/pnas.94.12.6380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harvey M., Sands A. T., Weiss R. S., Hegi M. E., Wiseman R. W., Pantazis P., Giovanella B. C., Tainsky M. A., Bradley A., Donehower L. A. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene. 1993 Sep;8(9):2457–2467. [PubMed] [Google Scholar]
  15. He C., Merrick B. A., Patterson R. M., Selkirk J. K. Altered protein synthesis in p53 null and hemizygous transgenic mouse embryonic fibroblasts. Appl Theor Electrophor. 1995;5(1):15–24. [PubMed] [Google Scholar]
  16. Hopwood D., Moitra S., Vojtesek B., Johnston D. A., Dillon J. F., Hupp T. R. Biochemical analysis of the stress protein response in human oesophageal epithelium. Gut. 1997 Aug;41(2):156–163. doi: 10.1136/gut.41.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hubbard M. J., Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci. 1993 May;18(5):172–177. doi: 10.1016/0968-0004(93)90109-z. [DOI] [PubMed] [Google Scholar]
  18. Hupp T. R., Lane D. P. Allosteric activation of latent p53 tetramers. Curr Biol. 1994 Oct 1;4(10):865–875. doi: 10.1016/s0960-9822(00)00195-0. [DOI] [PubMed] [Google Scholar]
  19. Hupp T. R., Lane D. P. Two distinct signaling pathways activate the latent DNA binding function of p53 in a casein kinase II-independent manner. J Biol Chem. 1995 Jul 28;270(30):18165–18174. doi: 10.1074/jbc.270.30.18165. [DOI] [PubMed] [Google Scholar]
  20. Hupp T. R., Meek D. W., Midgley C. A., Lane D. P. Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res. 1993 Jul 11;21(14):3167–3174. doi: 10.1093/nar/21.14.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hupp T. R., Sparks A., Lane D. P. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell. 1995 Oct 20;83(2):237–245. doi: 10.1016/0092-8674(95)90165-5. [DOI] [PubMed] [Google Scholar]
  22. Jeffrey P. D., Gorina S., Pavletich N. P. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science. 1995 Mar 10;267(5203):1498–1502. doi: 10.1126/science.7878469. [DOI] [PubMed] [Google Scholar]
  23. Johnson C. R., Morin P. E., Arrowsmith C. H., Freire E. Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry. 1995 Apr 25;34(16):5309–5316. doi: 10.1021/bi00016a002. [DOI] [PubMed] [Google Scholar]
  24. Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J. C., Valent A., Minty A., Chalon P., Lelias J. M., Dumont X. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997 Aug 22;90(4):809–819. doi: 10.1016/s0092-8674(00)80540-1. [DOI] [PubMed] [Google Scholar]
  25. Kussie P. H., Gorina S., Marechal V., Elenbaas B., Moreau J., Levine A. J., Pavletich N. P. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996 Nov 8;274(5289):948–953. doi: 10.1126/science.274.5289.948. [DOI] [PubMed] [Google Scholar]
  26. Lambert P. F., Kashanchi F., Radonovich M. F., Shiekhattar R., Brady J. N. Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem. 1998 Dec 4;273(49):33048–33053. doi: 10.1074/jbc.273.49.33048. [DOI] [PubMed] [Google Scholar]
  27. Lane D. The promise of molecular oncology. Lancet. 1998 May;351 (Suppl 2):SII17–SII20. doi: 10.1016/s0140-6736(98)90328-2. [DOI] [PubMed] [Google Scholar]
  28. Lees-Miller S. P., Sakaguchi K., Ullrich S. J., Appella E., Anderson C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol. 1992 Nov;12(11):5041–5049. doi: 10.1128/mcb.12.11.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lin J., Chen J., Elenbaas B., Levine A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 1994 May 15;8(10):1235–1246. doi: 10.1101/gad.8.10.1235. [DOI] [PubMed] [Google Scholar]
  30. Lomax M. E., Barnes D. M., Hupp T. R., Picksley S. M., Camplejohn R. S. Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene. 1998 Aug 6;17(5):643–649. doi: 10.1038/sj.onc.1201974. [DOI] [PubMed] [Google Scholar]
  31. Löffler B. M., Kunze H. Refinement of the Coomassie brilliant blue G assay for quantitative protein determination. Anal Biochem. 1989 Feb 15;177(1):100–102. doi: 10.1016/0003-2697(89)90021-3. [DOI] [PubMed] [Google Scholar]
  32. Mundt M., Hupp T., Fritsche M., Merkle C., Hansen S., Lane D., Groner B. Protein interactions at the carboxyl terminus of p53 result in the induction of its in vitro transactivation potential. Oncogene. 1997 Jul 10;15(2):237–244. doi: 10.1038/sj.onc.1201174. [DOI] [PubMed] [Google Scholar]
  33. Oren M. Lonely no more: p53 finds its kin in a tumor suppressor haven. Cell. 1997 Sep 5;90(5):829–832. doi: 10.1016/s0092-8674(00)80347-5. [DOI] [PubMed] [Google Scholar]
  34. Patterson R. M., He C., Selkirk J. K., Merrick B. A. Human p53 expressed in baculovirus-infected Sf9 cells displays a two-dimensional isoform pattern identical to wild-type p53 from human cells. Arch Biochem Biophys. 1996 Jun 1;330(1):71–79. doi: 10.1006/abbi.1996.0227. [DOI] [PubMed] [Google Scholar]
  35. Pearson G. D., Merrill G. F. Deletion of the Saccharomyces cerevisiae TRR1 gene encoding thioredoxin reductase inhibits p53-dependent reporter gene expression. J Biol Chem. 1998 Mar 6;273(10):5431–5434. doi: 10.1074/jbc.273.10.5431. [DOI] [PubMed] [Google Scholar]
  36. Pietenpol J. A., Tokino T., Thiagalingam S., el-Deiry W. S., Kinzler K. W., Vogelstein B. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):1998–2002. doi: 10.1073/pnas.91.6.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pise-Masison C. A., Radonovich M., Sakaguchi K., Appella E., Brady J. N. Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells. J Virol. 1998 Aug;72(8):6348–6355. doi: 10.1128/jvi.72.8.6348-6355.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schärer E., Iggo R. Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res. 1992 Apr 11;20(7):1539–1545. doi: 10.1093/nar/20.7.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Selivanova G., Iotsova V., Okan I., Fritsche M., Ström M., Groner B., Grafström R. C., Wiman K. G. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med. 1997 Jun;3(6):632–638. doi: 10.1038/nm0697-632. [DOI] [PubMed] [Google Scholar]
  40. Selkirk J. K., He C., Patterson R. M., Merrick B. A. Tumor suppressor p53 gene forms multiple isoforms: evidence for single locus origin and cytoplasmic complex formation with heat shock proteins. Electrophoresis. 1996 Nov;17(11):1764–1771. doi: 10.1002/elps.1150171114. [DOI] [PubMed] [Google Scholar]
  41. Shieh S. Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997 Oct 31;91(3):325–334. doi: 10.1016/s0092-8674(00)80416-x. [DOI] [PubMed] [Google Scholar]
  42. Soussi T., May P. Structural aspects of the p53 protein in relation to gene evolution: a second look. J Mol Biol. 1996 Aug 2;260(5):623–637. doi: 10.1006/jmbi.1996.0425. [DOI] [PubMed] [Google Scholar]
  43. Stephen C. W., Helminen P., Lane D. P. Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions. J Mol Biol. 1995 Apr 21;248(1):58–78. doi: 10.1006/jmbi.1995.0202. [DOI] [PubMed] [Google Scholar]
  44. Takenaka I., Morin F., Seizinger B. R., Kley N. Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases. J Biol Chem. 1995 Mar 10;270(10):5405–5411. doi: 10.1074/jbc.270.10.5405. [DOI] [PubMed] [Google Scholar]
  45. Thiagalingam S., Kinzler K. W., Vogelstein B. PAK1, a gene that can regulate p53 activity in yeast. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6062–6066. doi: 10.1073/pnas.92.13.6062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thompson A. M., Steel C. M., Chetty U., Dixon J. M., Carter D. C. Transforming growth factor beta 1 is unlikely to mediate p53 abnormalities in breast cancer. Br J Surg. 1995 Feb;82(2):210–211. doi: 10.1002/bjs.1800820223. [DOI] [PubMed] [Google Scholar]
  47. Vojtesek B., Dolezalova H., Lauerova L., Svitakova M., Havlis P., Kovarik J., Midgley C. A., Lane D. P. Conformational changes in p53 analysed using new antibodies to the core DNA binding domain of the protein. Oncogene. 1995 Jan 19;10(2):389–393. [PubMed] [Google Scholar]
  48. Waterman M. J., Stavridi E. S., Waterman J. L., Halazonetis T. D. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 1998 Jun;19(2):175–178. doi: 10.1038/542. [DOI] [PubMed] [Google Scholar]
  49. Yang A., Kaghad M., Wang Y., Gillett E., Fleming M. D., Dötsch V., Andrews N. C., Caput D., McKeon F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998 Sep;2(3):305–316. doi: 10.1016/s1097-2765(00)80275-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES