Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):207–214.

Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106-126.

M Salmona 1, P Malesani 1, L De Gioia 1, S Gorla 1, M Bruschi 1, A Molinari 1, F Della Vedova 1, B Pedrotti 1, M A Marrari 1, T Awan 1, O Bugiani 1, G Forloni 1, F Tagliavini 1
PMCID: PMC1220454  PMID: 10432318

Abstract

Prion diseases are marked by the cerebral accumulation of conformationally modified forms of the cellular prion protein (PrP(C)), known as PrP(res). The region comprising the residues 106-126 of human PrP seems to have a key role in this conformational conversion, because a synthetic peptide homologous with this sequence (PrP106-126) adopts different secondary structures in different environments. To investigate the molecular determinants of the physicochemical characteristics of PrP106-126, we synthesized a series of analogues including PrP106-126 H(D), PrP106-126 A and PrP106-126 K, with l-His-->d-His, His-->Ala and His-->Lys substitutions respectively at position 111, PrP106-126 NH(2) with amidation of the C-terminus, PrP106-126 V with an Ala-->Val substition at position 117, and PrP106-126 VNH(2) with an Ala-->Val substitution at position 117 and amidation of the C-terminus. The analysis of the secondary structure and aggregation properties of PrP106-126 and its analogues showed the following. (1) His(111) is central to the conformational changes of PrP peptides. (2) Amidation of the C-terminal Gly(126) yields a predominantly random coil structure, abolishes the molecular polymorphism and decreases the propensity of PrP106-126 to generate amyloid fibrils. (3) PrP106-126 V, carrying an Ala-->Val substitution at position 117, does not demonstrate a fibrillogenic ability superior to that of PrP106-126. However, the presence of Val at position 117 increases the aggregation properties of the amidated peptide. (4) Amyloid fibrils are not required for neurotoxicity because the effects of PrP106-126 NH(2) on primary neuronal cultures were similar to those of the wild-type sequence. Conversely, astroglial proliferation is related to the presence of amyloid fibrils, suggesting that astrogliosis in prion encephalopathies without amyloid deposits is a mediated effect rather than a direct effect of disease-specific PrP isoforms.

Full Text

The Full Text of this article is available as a PDF (223.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoni G., Angeretti N., Lucca E., Forloni G. Densitometric quantification of neuronal viability by computerized image analysis. Exp Neurol. 1997 Nov;148(1):281–287. doi: 10.1006/exnr.1997.6647. [DOI] [PubMed] [Google Scholar]
  2. Bolton D. C., McKinley M. P., Prusiner S. B. Identification of a protein that purifies with the scrapie prion. Science. 1982 Dec 24;218(4579):1309–1311. doi: 10.1126/science.6815801. [DOI] [PubMed] [Google Scholar]
  3. Brandner S., Isenmann S., Raeber A., Fischer M., Sailer A., Kobayashi Y., Marino S., Weissmann C., Aguzzi A. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature. 1996 Jan 25;379(6563):339–343. doi: 10.1038/379339a0. [DOI] [PubMed] [Google Scholar]
  4. Brown D. R., Herms J., Kretzschmar H. A. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport. 1994 Oct 27;5(16):2057–2060. doi: 10.1097/00001756-199410270-00017. [DOI] [PubMed] [Google Scholar]
  5. Brown D. R., Schmidt B., Kretzschmar H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature. 1996 Mar 28;380(6572):345–347. doi: 10.1038/380345a0. [DOI] [PubMed] [Google Scholar]
  6. Caughey B. W., Dong A., Bhat K. S., Ernst D., Hayes S. F., Caughey W. S. Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry. 1991 Aug 6;30(31):7672–7680. doi: 10.1021/bi00245a003. [DOI] [PubMed] [Google Scholar]
  7. Chen S. G., Teplow D. B., Parchi P., Teller J. K., Gambetti P., Autilio-Gambetti L. Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem. 1995 Aug 11;270(32):19173–19180. doi: 10.1074/jbc.270.32.19173. [DOI] [PubMed] [Google Scholar]
  8. Chiesa R., Angeretti N., Lucca E., Salmona M., Tagliavini F., Bugiani O., Forloni G. Clusterin (SGP-2) induction in rat astroglial cells exposed to prion protein fragment 106-126. Eur J Neurosci. 1996 Mar;8(3):589–597. doi: 10.1111/j.1460-9568.1996.tb01244.x. [DOI] [PubMed] [Google Scholar]
  9. De Gioia L., Selvaggini C., Ghibaudi E., Diomede L., Bugiani O., Forloni G., Tagliavini F., Salmona M. Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. J Biol Chem. 1994 Mar 18;269(11):7859–7862. [PubMed] [Google Scholar]
  10. DeArmond S. J., McKinley M. P., Barry R. A., Braunfeld M. B., McColloch J. R., Prusiner S. B. Identification of prion amyloid filaments in scrapie-infected brain. Cell. 1985 May;41(1):221–235. doi: 10.1016/0092-8674(85)90076-5. [DOI] [PubMed] [Google Scholar]
  11. Diomede L., Sozzani S., Luini W., Algeri M., De Gioia L., Chiesa R., Lievens P. M., Bugiani O., Forloni G., Tagliavini F. Activation effects of a prion protein fragment [PrP-(106-126)] on human leucocytes. Biochem J. 1996 Dec 1;320(Pt 2):563–570. doi: 10.1042/bj3200563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donne D. G., Viles J. H., Groth D., Mehlhorn I., James T. L., Cohen F. E., Prusiner S. B., Wright P. E., Dyson H. J. Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13452–13457. doi: 10.1073/pnas.94.25.13452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Forloni G., Angeretti N., Chiesa R., Monzani E., Salmona M., Bugiani O., Tagliavini F. Neurotoxicity of a prion protein fragment. Nature. 1993 Apr 8;362(6420):543–546. doi: 10.1038/362543a0. [DOI] [PubMed] [Google Scholar]
  14. Forloni G., Del Bo R., Angeretti N., Chiesa R., Smiroldo S., Doni R., Ghibaudi E., Salmona M., Porro M., Verga L. A neurotoxic prion protein fragment induces rat astroglial proliferation and hypertrophy. Eur J Neurosci. 1994 Sep 1;6(9):1415–1422. doi: 10.1111/j.1460-9568.1994.tb01003.x. [DOI] [PubMed] [Google Scholar]
  15. Ghetti B., Piccardo P., Frangione B., Bugiani O., Giaccone G., Young K., Prelli F., Farlow M. R., Dlouhy S. R., Tagliavini F. Prion protein amyloidosis. Brain Pathol. 1996 Apr;6(2):127–145. doi: 10.1111/j.1750-3639.1996.tb00796.x. [DOI] [PubMed] [Google Scholar]
  16. Hegde R. S., Mastrianni J. A., Scott M. R., DeFea K. A., Tremblay P., Torchia M., DeArmond S. J., Prusiner S. B., Lingappa V. R. A transmembrane form of the prion protein in neurodegenerative disease. Science. 1998 Feb 6;279(5352):827–834. doi: 10.1126/science.279.5352.827. [DOI] [PubMed] [Google Scholar]
  17. Jackson G. S., Hosszu L. L., Power A., Hill A. F., Kenney J., Saibil H., Craven C. J., Waltho J. P., Clarke A. R., Collinge J. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science. 1999 Mar 19;283(5409):1935–1937. doi: 10.1126/science.283.5409.1935. [DOI] [PubMed] [Google Scholar]
  18. Kazmirski S. L., Alonso D. O., Cohen F. E., Prusiner S. B., Daggett V. Theoretical studies of sequence effects on the conformational properties of a fragment of the prion protein: implications for scrapie formation. Chem Biol. 1995 May;2(5):305–315. doi: 10.1016/1074-5521(95)90049-7. [DOI] [PubMed] [Google Scholar]
  19. McKinley M. P., Bolton D. C., Prusiner S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell. 1983 Nov;35(1):57–62. doi: 10.1016/0092-8674(83)90207-6. [DOI] [PubMed] [Google Scholar]
  20. Muramoto T., Scott M., Cohen F. E., Prusiner S. B. Recombinant scrapie-like prion protein of 106 amino acids is soluble. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15457–15462. doi: 10.1073/pnas.93.26.15457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., Mehlhorn I., Huang Z., Fletterick R. J., Cohen F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962–10966. doi: 10.1073/pnas.90.23.10962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prusiner S. B. Molecular biology of prion diseases. Science. 1991 Jun 14;252(5012):1515–1522. doi: 10.1126/science.1675487. [DOI] [PubMed] [Google Scholar]
  23. Riek R., Hornemann S., Wider G., Billeter M., Glockshuber R., Wüthrich K. NMR structure of the mouse prion protein domain PrP(121-231). Nature. 1996 Jul 11;382(6587):180–182. doi: 10.1038/382180a0. [DOI] [PubMed] [Google Scholar]
  24. Riek R., Hornemann S., Wider G., Glockshuber R., Wüthrich K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 1997 Aug 18;413(2):282–288. doi: 10.1016/s0014-5793(97)00920-4. [DOI] [PubMed] [Google Scholar]
  25. Salmona M., Forloni G., Diomede L., Algeri M., De Gioia L., Angeretti N., Giaccone G., Tagliavini F., Bugiani O. A neurotoxic and gliotrophic fragment of the prion protein increases plasma membrane microviscosity. Neurobiol Dis. 1997;4(1):47–57. doi: 10.1006/nbdi.1997.0133. [DOI] [PubMed] [Google Scholar]
  26. Selvaggini C., De Gioia L., Cantù L., Ghibaudi E., Diomede L., Passerini F., Forloni G., Bugiani O., Tagliavini F., Salmona M. Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1380–1386. doi: 10.1006/bbrc.1993.1977. [DOI] [PubMed] [Google Scholar]
  27. Tagliavini F., Prelli F., Verga L., Giaccone G., Sarma R., Gorevic P., Ghetti B., Passerini F., Ghibaudi E., Forloni G. Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9678–9682. doi: 10.1073/pnas.90.20.9678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Terzi E., Hölzemann G., Seelig J. Alzheimer beta-amyloid peptide 25-35: electrostatic interactions with phospholipid membranes. Biochemistry. 1994 Jun 14;33(23):7434–7441. doi: 10.1021/bi00189a051. [DOI] [PubMed] [Google Scholar]
  29. Terzi E., Hölzemann G., Seelig J. Reversible random coil-beta-sheet transition of the Alzheimer beta-amyloid fragment (25-35). Biochemistry. 1994 Feb 15;33(6):1345–1350. doi: 10.1021/bi00172a009. [DOI] [PubMed] [Google Scholar]
  30. Warwicker J., Gane P. J. A model for prion protein dimerisation based on alpha-helical packing. Biochem Biophys Res Commun. 1996 Sep 24;226(3):777–782. doi: 10.1006/bbrc.1996.1428. [DOI] [PubMed] [Google Scholar]
  31. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
  32. Yao J., Keri J. E., Taffs R. E., Colton C. A. Characterization of interleukin-1 production by microglia in culture. Brain Res. 1992 Sep 18;591(1):88–93. doi: 10.1016/0006-8993(92)90981-e. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES