Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 1;342(Pt 2):275–280.

Glucose enhances insulin promoter activity in MIN6 beta-cells independently of changes in intracellular Ca2+ concentration and insulin secretion.

H J Kennedy 1, I Rafiq 1, A E Pouli 1, G A Rutter 1
PMCID: PMC1220461  PMID: 10455011

Abstract

Recent studies have suggested that glucose may activate insulin gene transcription through increases in intracellular Ca(2+) concentration, possibly acting via the release of stored insulin. We have investigated this question by dynamic photon-counting imaging of insulin- and c-fos-promoter-firefly luciferase reporter construct activity. Normalized to constitutive viral promoter activity, insulin promoter activity in MIN6 beta-cells was increased 1.6-fold after incubation at 30 mM compared with 3 mM glucose, but was unaltered at either glucose concentration by the presence of insulin (100 nM) or the Ca(2+) channel inhibitor, verapamil (100 microM). Increases in intracellular [Ca(2+)] achieved by plasma membrane depolarization with KCl failed to enhance either insulin or c-fos promoter activity in MIN6 cells, but increased c-fos promoter activity 5-fold in AtT20 cells. Together, these results demonstrate that glucose can exert a direct effect on insulin promoter activity in islet beta-cells, via a signalling pathway which does not require increases in intracellular [Ca(2+)] nor insulin release and insulin receptor activation.

Full Text

The Full Text of this article is available as a PDF (223.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J., Bunce J., Lowry M., Hansen S. E., Hedeskov C. J. The effect of sugars on (pro)insulin biosynthesis. Biochem J. 1978 Aug 15;174(2):517–526. doi: 10.1042/bj1740517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aspinwall C. A., Lakey J. R., Kennedy R. T. Insulin-stimulated insulin secretion in single pancreatic beta cells. J Biol Chem. 1999 Mar 5;274(10):6360–6365. doi: 10.1074/jbc.274.10.6360. [DOI] [PubMed] [Google Scholar]
  3. Boam D. S., Clark A. R., Docherty K. Positive and negative regulation of the human insulin gene by multiple trans-acting factors. J Biol Chem. 1990 May 15;265(14):8285–8296. [PubMed] [Google Scholar]
  4. Brini M., Marsault R., Bastianutto C., Pozzan T., Rizzuto R. Nuclear targeting of aequorin. A new approach for measuring nuclear Ca2+ concentration in intact cells. Cell Calcium. 1994 Oct;16(4):259–268. doi: 10.1016/0143-4160(94)90089-2. [DOI] [PubMed] [Google Scholar]
  5. Chawla S., Hardingham G. E., Quinn D. R., Bading H. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science. 1998 Sep 4;281(5382):1505–1509. doi: 10.1126/science.281.5382.1505. [DOI] [PubMed] [Google Scholar]
  6. Curran T., Morgan J. I. Fos: an immediate-early transcription factor in neurons. J Neurobiol. 1995 Mar;26(3):403–412. doi: 10.1002/neu.480260312. [DOI] [PubMed] [Google Scholar]
  7. Efrat S., Surana M., Fleischer N. Glucose induces insulin gene transcription in a murine pancreatic beta-cell line. J Biol Chem. 1991 Jun 15;266(17):11141–11143. [PubMed] [Google Scholar]
  8. German M. S., Wang J. The insulin gene contains multiple transcriptional elements that respond to glucose. Mol Cell Biol. 1994 Jun;14(6):4067–4075. doi: 10.1128/mcb.14.6.4067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. German M., Ashcroft S., Docherty K., Edlund H., Edlund T., Goodison S., Imura H., Kennedy G., Madsen O., Melloul D. The insulin gene promoter. A simplified nomenclature. Diabetes. 1995 Aug;44(8):1002–1004. doi: 10.2337/diab.44.8.1002. [DOI] [PubMed] [Google Scholar]
  10. Ginty D. D., Kornhauser J. M., Thompson M. A., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science. 1993 Apr 9;260(5105):238–241. doi: 10.1126/science.8097062. [DOI] [PubMed] [Google Scholar]
  11. Goodison S., Kenna S., Ashcroft S. J. Control of insulin gene expression by glucose. Biochem J. 1992 Jul 15;285(Pt 2):563–568. doi: 10.1042/bj2850563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenberg M. E., Greene L. A., Ziff E. B. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J Biol Chem. 1985 Nov 15;260(26):14101–14110. [PubMed] [Google Scholar]
  13. Greenberg M. E., Ziff E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. doi: 10.1038/311433a0. [DOI] [PubMed] [Google Scholar]
  14. Hardingham G. E., Chawla S., Johnson C. M., Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature. 1997 Jan 16;385(6613):260–265. doi: 10.1038/385260a0. [DOI] [PubMed] [Google Scholar]
  15. Karlsson O., Edlund T., Moss J. B., Rutter W. J., Walker M. D. A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8819–8823. doi: 10.1073/pnas.84.24.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kennedy H. J., Viollet B., Rafiq I., Kahn A., Rutter G. A. Upstream stimulatory factor-2 (USF2) activity is required for glucose stimulation of L-pyruvate kinase promoter activity in single living islet beta-cells. J Biol Chem. 1997 Aug 15;272(33):20636–20640. doi: 10.1074/jbc.272.33.20636. [DOI] [PubMed] [Google Scholar]
  17. Kulkarni R. N., Brüning J. C., Winnay J. N., Postic C., Magnuson M. A., Kahn C. R. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999 Feb 5;96(3):329–339. doi: 10.1016/s0092-8674(00)80546-2. [DOI] [PubMed] [Google Scholar]
  18. Leibiger I. B., Leibiger B., Moede T., Berggren P. O. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell. 1998 May;1(6):933–938. doi: 10.1016/s1097-2765(00)80093-3. [DOI] [PubMed] [Google Scholar]
  19. Macfarlane W. M., McKinnon C. M., Felton-Edkins Z. A., Cragg H., James R. F., Docherty K. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem. 1999 Jan 8;274(2):1011–1016. doi: 10.1074/jbc.274.2.1011. [DOI] [PubMed] [Google Scholar]
  20. Macfarlane W. M., Smith S. B., James R. F., Clifton A. D., Doza Y. N., Cohen P., Docherty K. The p38/reactivating kinase mitogen-activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic beta-cells. J Biol Chem. 1997 Aug 15;272(33):20936–20944. doi: 10.1074/jbc.272.33.20936. [DOI] [PubMed] [Google Scholar]
  21. Miyazaki J., Araki K., Yamato E., Ikegami H., Asano T., Shibasaki Y., Oka Y., Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990 Jul;127(1):126–132. doi: 10.1210/endo-127-1-126. [DOI] [PubMed] [Google Scholar]
  22. Nielsen D. A., Welsh M., Casadaban M. J., Steiner D. F. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J Biol Chem. 1985 Nov 5;260(25):13585–13589. [PubMed] [Google Scholar]
  23. Pipeleers D. G., Marichal M., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. XIV. Glucose regulation of insular biosynthetic activity. Endocrinology. 1973 Nov;93(5):1001–1011. doi: 10.1210/endo-93-5-1001. [DOI] [PubMed] [Google Scholar]
  24. Pouli A. E., Karagenc N., Wasmeier C., Hutton J. C., Bright N., Arden S., Schofield J. G., Rutter G. A. A phogrin-aequorin chimaera to image free Ca2+ in the vicinity of secretory granules. Biochem J. 1998 Mar 15;330(Pt 3):1399–1404. doi: 10.1042/bj3301399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rafiq I., Kennedy H. J., Rutter G. A. Glucose-dependent translocation of insulin promoter factor-1 (IPF-1) between the nuclear periphery and the nucleoplasm of single MIN6 beta-cells. J Biol Chem. 1998 Sep 4;273(36):23241–23247. doi: 10.1074/jbc.273.36.23241. [DOI] [PubMed] [Google Scholar]
  26. Rutter G. A., Burnett P., Rizzuto R., Brini M., Murgia M., Pozzan T., Tavaré J. M., Denton R. M. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5489–5494. doi: 10.1073/pnas.93.11.5489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rutter G. A. Insulin secretion: feed-forward control of insulin biosynthesis? Curr Biol. 1999 Jun 17;9(12):R443–R445. doi: 10.1016/s0960-9822(99)80277-2. [DOI] [PubMed] [Google Scholar]
  28. Rutter G. A., Kennedy H. J., Wood C. D., White M. R., Tavaré J. M. Real-time imaging of gene expression in single living cells. Chem Biol. 1998 Nov;5(11):R285–R290. doi: 10.1016/s1074-5521(98)90287-3. [DOI] [PubMed] [Google Scholar]
  29. Rutter G. A., Theler J. M., Murgia M., Wollheim C. B., Pozzan T., Rizzuto R. Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonist-induced insulin secretion. J Biol Chem. 1993 Oct 25;268(30):22385–22390. [PubMed] [Google Scholar]
  30. Rutter G. A., White M. R., Tavaré J. M. Involvement of MAP kinase in insulin signalling revealed by non-invasive imaging of luciferase gene expression in single living cells. Curr Biol. 1995 Aug 1;5(8):890–899. doi: 10.1016/s0960-9822(95)00179-5. [DOI] [PubMed] [Google Scholar]
  31. Sassone-Corsi P. Coupling gene expression to cAMP signalling: role of CREB and CREM. Int J Biochem Cell Biol. 1998 Jan;30(1):27–38. doi: 10.1016/s1357-2725(97)00093-9. [DOI] [PubMed] [Google Scholar]
  32. Susini S., Roche E., Prentki M., Schlegel W. Glucose and glucoincretin peptides synergize to induce c-fos, c-jun, junB, zif-268, and nur-77 gene expression in pancreatic beta(INS-1) cells. FASEB J. 1998 Sep;12(12):1173–1182. [PubMed] [Google Scholar]
  33. Takasuka N., White M. R., Wood C. D., Robertson W. R., Davis J. R. Dynamic changes in prolactin promoter activation in individual living lactotrophic cells. Endocrinology. 1998 Mar;139(3):1361–1368. doi: 10.1210/endo.139.3.5826. [DOI] [PubMed] [Google Scholar]
  34. Werlen G., Belin D., Conne B., Roche E., Lew D. P., Prentki M. Intracellular Ca2+ and the regulation of early response gene expression in HL-60 myeloid leukemia cells. J Biol Chem. 1993 Aug 5;268(22):16596–16601. [PubMed] [Google Scholar]
  35. Zhao C., Rutter G. A. Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 beta-cell lines. FEBS Lett. 1998 Jul 3;430(3):213–216. doi: 10.1016/s0014-5793(98)00600-0. [DOI] [PubMed] [Google Scholar]
  36. Zheng W., Rampe D., Triggle D. J. Pharmacological, radioligand binding, and electrophysiological characteristics of FPL 64176, a novel nondihydropyridine Ca2+ channel activator, in cardiac and vascular preparations. Mol Pharmacol. 1991 Nov;40(5):734–741. [PubMed] [Google Scholar]
  37. de Vargas L. M., Sobolewski J., Siegel R., Moss L. G. Individual beta cells within the intact islet differentially respond to glucose. J Biol Chem. 1997 Oct 17;272(42):26573–26577. doi: 10.1074/jbc.272.42.26573. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES