Abstract
Nerve growth factor (NGF) stimulates the expression of the cholinergic gene locus, which encodes choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), the proteins necessary for the synthesis and storage of the neurotransmitter acetylcholine (ACh). To determine whether this action of NGF is mediated by the p140TrkA NGF receptor (a member of the Trk tyrosine kinase family) we used a murine basal forebrain cholinergic cell line, SN56, stably transfected with rat trkA cDNA. Treatment of these transfectants with NGF activated mitogen-activated protein kinase and increased cytosolic free calcium concentrations, confirming the reconstitution of TrkA-mediated signalling pathways. The expression of ChAT and VAChT mRNA, as well as ACh content, were coordinately up-regulated by NGF in SN56-trkA transfectants. None of these responses occurred in the parental SN56 cells, which do not express endogenous TrkA, indicating that these actions of NGF required TrkA. We previously reported that ciliary neurotrophic factor (CNTF) upregulates the expression of ChAT and VAChT, as well as ACh production, in SN56 cells. The combined treatment of SN56-trkA cells with CNTF and NGF revealed a complex interaction of these factors in the regulation of cholinergic gene locus expression. At low concentrations of CNTF (<1 ng/ml), the upregulation of ACh synthesis evoked by these factors was additive. However, at higher concentrations of CNTF (>1 ng/ml), NGF attenuated the stimulatory effect of CNTF on ChAT and VAChT mRNA and ACh content. This attenuation was not due to interference with early steps of CNTF receptor signalling, as pre-treatment of SN56-trkA cells with NGF did not affect the nuclear translocation of the transcription factor, Stat3, evoked by CNTF.
Full Text
The Full Text of this article is available as a PDF (312.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batistatou A., Volonté C., Greene L. A. Nerve growth factor employs multiple pathways to induce primary response genes in PC12 cells. Mol Biol Cell. 1992 Mar;3(3):363–371. doi: 10.1091/mbc.3.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bejanin S., Cervini R., Mallet J., Berrard S. A unique gene organization for two cholinergic markers, choline acetyltransferase and a putative vesicular transporter of acetylcholine. J Biol Chem. 1994 Sep 2;269(35):21944–21947. [PubMed] [Google Scholar]
- Bejanin S., Habert E., Berrard S., Edwards J. B., Loeffler J. P., Mallet J. Promoter elements of the rat choline acetyltransferase gene allowing nerve growth factor inducibility in transfected primary cultured cells. J Neurochem. 1992 Apr;58(4):1580–1583. doi: 10.1111/j.1471-4159.1992.tb11383.x. [DOI] [PubMed] [Google Scholar]
- Berrard S., Varoqui H., Cervini R., Israël M., Mallet J., Diebler M. F. Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter. J Neurochem. 1995 Aug;65(2):939–942. doi: 10.1046/j.1471-4159.1995.65020939.x. [DOI] [PubMed] [Google Scholar]
- Berse B., Blusztajn J. K. Coordinated up-regulation of choline acetyltransferase and vesicular acetylcholine transporter gene expression by the retinoic acid receptor alpha, cAMP, and leukemia inhibitory factor/ciliary neurotrophic factor signaling pathways in a murine septal cell line. J Biol Chem. 1995 Sep 22;270(38):22101–22104. doi: 10.1074/jbc.270.38.22101. [DOI] [PubMed] [Google Scholar]
- Berse B., Blusztajn J. K. Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell-type specific. FEBS Lett. 1997 Jun 30;410(2-3):175–179. doi: 10.1016/s0014-5793(97)00568-1. [DOI] [PubMed] [Google Scholar]
- Blusztajn J. K., Venturini A., Jackson D. A., Lee H. J., Wainer B. H. Acetylcholine synthesis and release is enhanced by dibutyryl cyclic AMP in a neuronal cell line derived from mouse septum. J Neurosci. 1992 Mar;12(3):793–799. doi: 10.1523/JNEUROSCI.12-03-00793.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonni A., Sun Y., Nadal-Vicens M., Bhatt A., Frank D. A., Rozovsky I., Stahl N., Yancopoulos G. D., Greenberg M. E. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science. 1997 Oct 17;278(5337):477–483. doi: 10.1126/science.278.5337.477. [DOI] [PubMed] [Google Scholar]
- Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Chung J., Uchida E., Grammer T. C., Blenis J. STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997 Nov;17(11):6508–6516. doi: 10.1128/mcb.17.11.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Bernardi M. A., Rabins S. J., Colangelo A. M., Brooker G., Mocchetti I. TrkA mediates the nerve growth factor-induced intracellular calcium accumulation. J Biol Chem. 1996 Mar 15;271(11):6092–6098. doi: 10.1074/jbc.271.11.6092. [DOI] [PubMed] [Google Scholar]
- Debeir T., Saragovi H. U., Cuello A. C. A nerve growth factor mimetic TrkA antagonist causes withdrawal of cortical cholinergic boutons in the adult rat. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4067–4072. doi: 10.1073/pnas.96.7.4067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debeir T., Saragovi H. U., Cuello A. C. TrkA antagonists decrease NGF-induced ChAT activity in vitro and modulate cholinergic synaptic number in vivo. J Physiol Paris. 1998 Jun-Aug;92(3-4):205–208. doi: 10.1016/s0928-4257(98)80011-9. [DOI] [PubMed] [Google Scholar]
- Eiden L. E. The cholinergic gene locus. J Neurochem. 1998 Jun;70(6):2227–2240. doi: 10.1046/j.1471-4159.1998.70062227.x. [DOI] [PubMed] [Google Scholar]
- Erickson J. D., Varoqui H., Schäfer M. K., Modi W., Diebler M. F., Weihe E., Rand J., Eiden L. E., Bonner T. I., Usdin T. B. Functional identification of a vesicular acetylcholine transporter and its expression from a "cholinergic" gene locus. J Biol Chem. 1994 Sep 2;269(35):21929–21932. [PubMed] [Google Scholar]
- Faivre-Bauman A., Loudes C., Neveu I., Naveilhan P., Vantini G., Epelbaum J., Onteniente B. Decreased choline acetyltransferase activity in nerve growth factor-transgenic mice during brain development. Neuroscience. 1994 Sep;62(2):333–336. doi: 10.1016/0306-4522(94)90367-0. [DOI] [PubMed] [Google Scholar]
- Giles R. H., Peters D. J., Breuning M. H. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 1998 May;14(5):178–183. doi: 10.1016/s0168-9525(98)01438-3. [DOI] [PubMed] [Google Scholar]
- Ginty D. D., Bonni A., Greenberg M. E. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell. 1994 Jun 3;77(5):713–725. doi: 10.1016/0092-8674(94)90055-8. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hammond D. N., Wainer B. H., Tonsgard J. H., Heller A. Neuronal properties of clonal hybrid cell lines derived from central cholinergic neurons. Science. 1986 Dec 5;234(4781):1237–1240. doi: 10.1126/science.3775382. [DOI] [PubMed] [Google Scholar]
- Hartikka J., Hefti F. Comparison of nerve growth factor's effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro. J Neurosci Res. 1988 Oct-Dec;21(2-4):352–364. doi: 10.1002/jnr.490210227. [DOI] [PubMed] [Google Scholar]
- Hefti F., Dravid A., Hartikka J. Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res. 1984 Feb 20;293(2):305–311. doi: 10.1016/0006-8993(84)91237-x. [DOI] [PubMed] [Google Scholar]
- Hempstead B. L., Rabin S. J., Kaplan L., Reid S., Parada L. F., Kaplan D. R. Overexpression of the trk tyrosine kinase rapidly accelerates nerve growth factor-induced differentiation. Neuron. 1992 Nov;9(5):883–896. doi: 10.1016/0896-6273(92)90241-5. [DOI] [PubMed] [Google Scholar]
- Hersh L. B., Kong C. F., Sampson C., Mues G., Li Y. P., Fisher A., Hilt D., Baetge E. E. Comparison of the promoter region of the human and porcine choline acetyltransferase genes: localization of an important enhancer region. J Neurochem. 1993 Jul;61(1):306–314. doi: 10.1111/j.1471-4159.1993.tb03569.x. [DOI] [PubMed] [Google Scholar]
- Holtzman D. M., Li Y., Parada L. F., Kinsman S., Chen C. K., Valletta J. S., Zhou J., Long J. B., Mobley W. C. p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron. 1992 Sep;9(3):465–478. doi: 10.1016/0896-6273(92)90184-f. [DOI] [PubMed] [Google Scholar]
- Horvai A. E., Xu L., Korzus E., Brard G., Kalafus D., Mullen T. M., Rose D. W., Rosenfeld M. G., Glass C. K. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1074–1079. doi: 10.1073/pnas.94.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ihara S., Nakajima K., Fukada T., Hibi M., Nagata S., Hirano T., Fukui Y. Dual control of neurite outgrowth by STAT3 and MAP kinase in PC12 cells stimulated with interleukin-6. EMBO J. 1997 Sep 1;16(17):5345–5352. doi: 10.1093/emboj/16.17.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue H., Li Y. P., Wagner J. A., Hersh L. B. Expression of the choline acetyltransferase gene depends on protein kinase A activity. J Neurochem. 1995 Mar;64(3):985–990. doi: 10.1046/j.1471-4159.1995.64030985.x. [DOI] [PubMed] [Google Scholar]
- Johnson J. A., Nathanson N. M. Differential requirements for p21ras and protein kinase C in the regulation of neuronal gene expression by nerve growth factor and neurokines. J Biol Chem. 1994 Jul 22;269(29):18856–18863. [PubMed] [Google Scholar]
- Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S. C., Heyman R. A., Rose D. W., Glass C. K. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996 May 3;85(3):403–414. doi: 10.1016/s0092-8674(00)81118-6. [DOI] [PubMed] [Google Scholar]
- Kaplan D. R., Miller F. D. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol. 1997 Apr;9(2):213–221. doi: 10.1016/s0955-0674(97)80065-8. [DOI] [PubMed] [Google Scholar]
- Kaplan D. R., Stephens R. M. Neurotrophin signal transduction by the Trk receptor. J Neurobiol. 1994 Nov;25(11):1404–1417. doi: 10.1002/neu.480251108. [DOI] [PubMed] [Google Scholar]
- Knipper M., da Penha Berzaghi M., Blöchl A., Breer H., Thoenen H., Lindholm D. Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci. 1994 Apr 1;6(4):668–671. doi: 10.1111/j.1460-9568.1994.tb00312.x. [DOI] [PubMed] [Google Scholar]
- Kouhara H., Hadari Y. R., Spivak-Kroizman T., Schilling J., Bar-Sagi D., Lax I., Schlessinger J. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 1997 May 30;89(5):693–702. doi: 10.1016/s0092-8674(00)80252-4. [DOI] [PubMed] [Google Scholar]
- Lapchak P. A., Jenden D. J., Hefti F. Pharmacological stimulation reveals recombinant human nerve growth factor-induced increases of in vivo hippocampal cholinergic function measured in rats with partial fimbrial transections. Neuroscience. 1992 Oct;50(4):847–856. doi: 10.1016/0306-4522(92)90208-j. [DOI] [PubMed] [Google Scholar]
- Lee H. J., Hammond D. N., Large T. H., Wainer B. H. Immortalized young adult neurons from the septal region: generation and characterization. Brain Res Dev Brain Res. 1990 Mar 1;52(1-2):219–228. doi: 10.1016/0165-3806(90)90238-t. [DOI] [PubMed] [Google Scholar]
- Li Y., Holtzman D. M., Kromer L. F., Kaplan D. R., Chua-Couzens J., Clary D. O., Knüsel B., Mobley W. C. Regulation of TrkA and ChAT expression in developing rat basal forebrain: evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons. J Neurosci. 1995 Apr;15(4):2888–2905. doi: 10.1523/JNEUROSCI.15-04-02888.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misawa H., Takahashi R., Deguchi T. Coordinate expression of vesicular acetylcholine transporter and choline acetyltransferase in sympathetic superior cervical neurones. Neuroreport. 1995 May 9;6(7):965–968. doi: 10.1097/00001756-199505090-00004. [DOI] [PubMed] [Google Scholar]
- Misawa H., Takahashi R., Deguchi T. Transcriptional regulation of choline acetyltransferase gene by cyclic AMP. J Neurochem. 1993 Apr;60(4):1383–1387. doi: 10.1111/j.1471-4159.1993.tb03299.x. [DOI] [PubMed] [Google Scholar]
- Nakamura T., Sanokawa R., Sasaki Y., Ayusawa D., Oishi M., Mori N. N-Shc: a neural-specific adapter molecule that mediates signaling from neurotrophin/Trk to Ras/MAPK pathway. Oncogene. 1996 Sep 19;13(6):1111–1121. [PubMed] [Google Scholar]
- Parsons S. M., Bahr B. A., Gracz L. M., Kaufman R., Kornreich W. D., Nilsson L., Rogers G. A. Acetylcholine transport: fundamental properties and effects of pharmacologic agents. Ann N Y Acad Sci. 1987;493:220–233. doi: 10.1111/j.1749-6632.1987.tb27203.x. [DOI] [PubMed] [Google Scholar]
- Pedersen W. A., Berse B., Schüler U., Wainer B. H., Blusztajn J. K. All-trans- and 9-cis-retinoic acid enhance the cholinergic properties of a murine septal cell line: evidence that the effects are mediated by activation of retinoic acid receptor-alpha. J Neurochem. 1995 Jul;65(1):50–58. doi: 10.1046/j.1471-4159.1995.65010050.x. [DOI] [PubMed] [Google Scholar]
- Pongrac J. L., Rylett R. J. Differential effects of nerve growth factor on expression of choline acetyltransferase and sodium-coupled choline transport in basal forebrain cholinergic neurons in culture. J Neurochem. 1996 Feb;66(2):804–810. doi: 10.1046/j.1471-4159.1996.66020804.x. [DOI] [PubMed] [Google Scholar]
- Pongrac J. L., Rylett R. J. Molecular mechanisms regulating NGF-mediated enhancement of cholinergic neuronal phenotype: c-fos trans-activation of the choline acetyltransferase gene. J Mol Neurosci. 1998 Aug;11(1):79–93. doi: 10.1385/jmn:11:1:79. [DOI] [PubMed] [Google Scholar]
- Pongrac J. L., Rylett R. J. NGF-induction of the expression of ChAT mRNA in PC12 cells and primary cultures of embryonic rat basal forebrain. Brain Res Mol Brain Res. 1998 Nov 12;62(1):25–34. doi: 10.1016/s0169-328x(98)00215-0. [DOI] [PubMed] [Google Scholar]
- Potter P. E., Meek J. L., Neff N. H. Acetylcholine and choline in neuronal tissue measured by HPLC with electrochemical detection. J Neurochem. 1983 Jul;41(1):188–194. doi: 10.1111/j.1471-4159.1983.tb13668.x. [DOI] [PubMed] [Google Scholar]
- Quirin-Stricker C., Mauvais C., Schmitt M. Transcriptional activation of human choline acetyltransferase by AP2- and NGF-induced factors. Brain Res Mol Brain Res. 1997 Oct 3;49(1-2):165–174. doi: 10.1016/s0169-328x(97)00141-1. [DOI] [PubMed] [Google Scholar]
- Rajan P., Gearan T., Fink J. S. Leukemia inhibitory factor and NGF regulate signal transducers and activators of transcription activation in sympathetic ganglia: convergence of cytokine- and neurotrophin-signaling pathways. Brain Res. 1998 Aug 17;802(1-2):198–204. doi: 10.1016/s0006-8993(98)00611-8. [DOI] [PubMed] [Google Scholar]
- Rajan P., McKay R. D. Multiple routes to astrocytic differentiation in the CNS. J Neurosci. 1998 May 15;18(10):3620–3629. doi: 10.1523/JNEUROSCI.18-10-03620.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roghani A., Feldman J., Kohan S. A., Shirzadi A., Gundersen C. B., Brecha N., Edwards R. H. Molecular cloning of a putative vesicular transporter for acetylcholine. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10620–10624. doi: 10.1073/pnas.91.22.10620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segal R. A., Greenberg M. E. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci. 1996;19:463–489. doi: 10.1146/annurev.ne.19.030196.002335. [DOI] [PubMed] [Google Scholar]
- Shimojo M., Wu D., Hersh L. B. The cholinergic gene locus is coordinately regulated by protein kinase A II in PC12 cells. J Neurochem. 1998 Sep;71(3):1118–1126. doi: 10.1046/j.1471-4159.1998.71031118.x. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Symes A. J., Rajan P., Corpus L., Fink J. S. C/EBP-related sites in addition to a STAT site are necessary for ciliary neurotrophic factor-leukemia inhibitory factor-dependent transcriptional activation by the vasoactive intestinal peptide cytokine response element. J Biol Chem. 1995 Apr 7;270(14):8068–8075. doi: 10.1074/jbc.270.14.8068. [DOI] [PubMed] [Google Scholar]
- Taga T. Gp130, a shared signal transducing receptor component for hematopoietic and neuropoietic cytokines. J Neurochem. 1996 Jul;67(1):1–10. doi: 10.1046/j.1471-4159.1996.67010001.x. [DOI] [PubMed] [Google Scholar]
- Takei N., Kuramoto H., Endo Y., Hatanaka H. NGF and BDNF increase the immunoreactivity of vesicular acetylcholine transporter in cultured neurons from the embryonic rat septum. Neurosci Lett. 1997 May 2;226(3):207–209. doi: 10.1016/s0304-3940(97)00284-x. [DOI] [PubMed] [Google Scholar]
- Tian X., Sun X., Suszkiw J. B. Developmental age-dependent upregulation of choline acetyltransferase and vesicular acetylcholine transporter mRNA expression in neonatal rat septum by nerve growth factor. Neurosci Lett. 1996 May 10;209(2):134–136. doi: 10.1016/0304-3940(96)12629-x. [DOI] [PubMed] [Google Scholar]
- Tinhofer I., Maly K., Dietl P., Hochholdinger F., Mayr S., Obermeier A., Grunicke H. H. Differential Ca2+ signaling induced by activation of the epidermal growth factor and nerve growth factor receptors. J Biol Chem. 1996 Nov 29;271(48):30505–30509. doi: 10.1074/jbc.271.48.30505. [DOI] [PubMed] [Google Scholar]
- Van der Zee C. E., Ross G. M., Riopelle R. J., Hagg T. Survival of cholinergic forebrain neurons in developing p75NGFR-deficient mice. Science. 1996 Dec 6;274(5293):1729–1732. doi: 10.1126/science.274.5293.1729. [DOI] [PubMed] [Google Scholar]
- Wen Z., Darnell J. E., Jr Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 1997 Jun 1;25(11):2062–2067. doi: 10.1093/nar/25.11.2062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wen Z., Zhong Z., Darnell J. E., Jr Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995 Jul 28;82(2):241–250. doi: 10.1016/0092-8674(95)90311-9. [DOI] [PubMed] [Google Scholar]
- Wu D., Hersh L. B. Choline acetyltransferase: celebrating its fiftieth year. J Neurochem. 1994 May;62(5):1653–1663. doi: 10.1046/j.1471-4159.1994.62051653.x. [DOI] [PubMed] [Google Scholar]
- Wu Y. Y., Bradshaw R. A. Synergistic induction of neurite outgrowth by nerve growth factor or epidermal growth factor and interleukin-6 in PC12 cells. J Biol Chem. 1996 May 31;271(22):13033–13039. doi: 10.1074/jbc.271.22.13033. [DOI] [PubMed] [Google Scholar]
- Xu H., Federoff H., Maragos J., Parada L. F., Kessler J. A. Viral transduction of trkA into cultured nodose and spinal motor neurons conveys NGF responsiveness. Dev Biol. 1994 May;163(1):152–161. doi: 10.1006/dbio.1994.1131. [DOI] [PubMed] [Google Scholar]
- Yuen E. C., Howe C. L., Li Y., Holtzman D. M., Mobley W. C. Nerve growth factor and the neurotrophic factor hypothesis. Brain Dev. 1996 Sep-Oct;18(5):362–368. doi: 10.1016/0387-7604(96)00051-4. [DOI] [PubMed] [Google Scholar]
- Zhang X., Blenis J., Li H. C., Schindler C., Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995 Mar 31;267(5206):1990–1994. doi: 10.1126/science.7701321. [DOI] [PubMed] [Google Scholar]
- Zhong W., Zaheer A., Lim R. Ciliary neurotrophic factor (CNTF) enhances the effects of nerve growth factor on PC12 cells. Brain Res. 1994 Oct 24;661(1-2):56–62. doi: 10.1016/0006-8993(94)91180-0. [DOI] [PubMed] [Google Scholar]