Abstract
Gabapentin [Neurontin, 1-(aminomethyl)cyclohexaneacetic acid] is a novel anticonvulsant drug with a high binding affinity for the Ca(2+)-channel subunit alpha(2)delta. In this study, the gabapentin-binding properties of wild-type and mutated porcine brain alpha(2)delta proteins were investigated. Removal of the disulphide bonds between the alpha(2) and the delta subunits did not result in a significant loss of gabapentin binding, suggesting that the disulphide linkage between the two subunits is not required for binding. Singly expressed alpha(2) protein remained membrane associated. However, alpha(2) alone was unable to bind gabapentin, unless the cells were concurrently transfected with the expression vector for delta, suggesting that both alpha(2) and delta are required for gabapentin binding. Using internal deletion mutagenesis, we mapped two regions [amino acid residues 339-365 (DeltaF) and 875-905 (DeltaJ)] within the alpha(2) subunit that are not required for gabapentin binding. Further, deletion of three other individual regions [amino acid residues 206-222 (DeltaD), 516-537 (DeltaH) and 583-603 (DeltaI)] within the alpha(2) subunit disrupted gabapentin binding, suggesting the structural importance of these regions. Using alanine to replace four to six amino acid residues in each of these regions abolished gabapentin binding. These results demonstrate that region D, between the N-terminal end and the first putative transmembrane domain of alpha(2), and regions H and I, between the putative splicing acceptor sites (Gln(511) and Ser(601)), may play important roles in maintaining the structural integrity for gabapentin binding. Further single amino acid replacement mutagenesis within these regions identified Arg(217) as critical for gabapentin binding.
Full Text
The Full Text of this article is available as a PDF (248.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angelotti T., Hofmann F. Tissue-specific expression of splice variants of the mouse voltage-gated calcium channel alpha2/delta subunit. FEBS Lett. 1996 Nov 18;397(2-3):331–337. doi: 10.1016/s0014-5793(96)01205-7. [DOI] [PubMed] [Google Scholar]
- Brickley K., Campbell V., Berrow N., Leach R., Norman R. I., Wray D., Dolphin A. C., Baldwin S. A. Use of site-directed antibodies to probe the topography of the alpha 2 subunit of voltage-gated Ca2+ channels. FEBS Lett. 1995 May 8;364(2):129–133. doi: 10.1016/0014-5793(95)00371-f. [DOI] [PubMed] [Google Scholar]
- Brust P. F., Simerson S., McCue A. F., Deal C. R., Schoonmaker S., Williams M. E., Veliçelebi G., Johnson E. C., Harpold M. M., Ellis S. B. Human neuronal voltage-dependent calcium channels: studies on subunit structure and role in channel assembly. Neuropharmacology. 1993 Nov;32(11):1089–1102. doi: 10.1016/0028-3908(93)90004-m. [DOI] [PubMed] [Google Scholar]
- Burgess D. L., Jones J. M., Meisler M. H., Noebels J. L. Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell. 1997 Feb 7;88(3):385–392. doi: 10.1016/s0092-8674(00)81877-2. [DOI] [PubMed] [Google Scholar]
- Catterall W. A. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
- Ellis S. B., Williams M. E., Ways N. R., Brenner R., Sharp A. H., Leung A. T., Campbell K. P., McKenna E., Koch W. J., Hui A. Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel. Science. 1988 Sep 23;241(4873):1661–1664. doi: 10.1126/science.2458626. [DOI] [PubMed] [Google Scholar]
- Felix R., Gurnett C. A., De Waard M., Campbell K. P. Dissection of functional domains of the voltage-dependent Ca2+ channel alpha2delta subunit. J Neurosci. 1997 Sep 15;17(18):6884–6891. doi: 10.1523/JNEUROSCI.17-18-06884.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field M. J., Oles R. J., Lewis A. S., McCleary S., Hughes J., Singh L. Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br J Pharmacol. 1997 Aug;121(8):1513–1522. doi: 10.1038/sj.bjp.0701320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fletcher C. F., Lutz C. M., O'Sullivan T. N., Shaughnessy J. D., Jr, Hawkes R., Frankel W. N., Copeland N. G., Jenkins N. A. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell. 1996 Nov 15;87(4):607–617. doi: 10.1016/s0092-8674(00)81381-1. [DOI] [PubMed] [Google Scholar]
- Flucher B. E., Phillips J. L., Powell J. A. Dihydropyridine receptor alpha subunits in normal and dysgenic muscle in vitro: expression of alpha 1 is required for proper targeting and distribution of alpha 2. J Cell Biol. 1991 Dec;115(5):1345–1356. doi: 10.1083/jcb.115.5.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gee N. S., Brown J. P., Dissanayake V. U., Offord J., Thurlow R., Woodruff G. N. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem. 1996 Mar 8;271(10):5768–5776. doi: 10.1074/jbc.271.10.5768. [DOI] [PubMed] [Google Scholar]
- Gilad B., Shenkar N., Halevi S., Trus M., Atlas D. Identification of the alternative spliced form of the alpha 2/delta subunit of voltage sensitive Ca2+ channels expressed in PC12 cells. Neurosci Lett. 1995 Jul 7;193(3):157–160. doi: 10.1016/0304-3940(95)11689-t. [DOI] [PubMed] [Google Scholar]
- Goldlust A., Su T. Z., Welty D. F., Taylor C. P., Oxender D. L. Effects of anticonvulsant drug gabapentin on the enzymes in metabolic pathways of glutamate and GABA. Epilepsy Res. 1995 Sep;22(1):1–11. doi: 10.1016/0920-1211(95)00028-9. [DOI] [PubMed] [Google Scholar]
- Gurnett C. A., De Waard M., Campbell K. P. Dual function of the voltage-dependent Ca2+ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron. 1996 Feb;16(2):431–440. doi: 10.1016/s0896-6273(00)80061-6. [DOI] [PubMed] [Google Scholar]
- Gurney M. E., Cutting F. B., Zhai P., Doble A., Taylor C. P., Andrus P. K., Hall E. D. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol. 1996 Feb;39(2):147–157. doi: 10.1002/ana.410390203. [DOI] [PubMed] [Google Scholar]
- Hosey M. M., Lazdunski M. Calcium channels: molecular pharmacology, structure and regulation. J Membr Biol. 1988 Sep;104(2):81–105. doi: 10.1007/BF01870922. [DOI] [PubMed] [Google Scholar]
- Jay S. D., Sharp A. H., Kahl S. D., Vedvick T. S., Harpold M. M., Campbell K. P. Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. J Biol Chem. 1991 Feb 15;266(5):3287–3293. [PubMed] [Google Scholar]
- Kim H. L., Kim H., Lee P., King R. G., Chin H. Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel alpha 2 subunit. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3251–3255. doi: 10.1073/pnas.89.8.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung A. T., Imagawa T., Campbell K. P. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem. 1987 Jun 15;262(17):7943–7946. [PubMed] [Google Scholar]
- Miller R. J. Voltage-sensitive Ca2+ channels. J Biol Chem. 1992 Jan 25;267(3):1403–1406. [PubMed] [Google Scholar]
- Perez-Reyes E., Kim H. S., Lacerda A. E., Horne W., Wei X. Y., Rampe D., Campbell K. P., Brown A. M., Birnbaumer L. Induction of calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle. Nature. 1989 Jul 20;340(6230):233–236. doi: 10.1038/340233a0. [DOI] [PubMed] [Google Scholar]
- Reimann W. Inhibition by GABA, baclofen and gabapentin of dopamine release from rabbit caudate nucleus: are there common or different sites of action? Eur J Pharmacol. 1983 Oct 28;94(3-4):341–344. doi: 10.1016/0014-2999(83)90425-9. [DOI] [PubMed] [Google Scholar]
- Rock D. M., Kelly K. M., Macdonald R. L. Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. Epilepsy Res. 1993 Oct;16(2):89–98. doi: 10.1016/0920-1211(93)90023-z. [DOI] [PubMed] [Google Scholar]
- Schlicker E., Reimann W., Göthert M. Gabapentin decreases monoamine release without affecting acetylcholine release in the brain. Arzneimittelforschung. 1985;35(9):1347–1349. [PubMed] [Google Scholar]
- Singh L., Field M. J., Ferris P., Hunter J. C., Oles R. J., Williams R. G., Woodruff G. N. The antiepileptic agent gabapentin (Neurontin) possesses anxiolytic-like and antinociceptive actions that are reversed by D-serine. Psychopharmacology (Berl) 1996 Sep;127(1):1–9. doi: 10.1007/BF02805968. [DOI] [PubMed] [Google Scholar]
- Smith S. J., Augustine G. J. Calcium ions, active zones and synaptic transmitter release. Trends Neurosci. 1988 Oct;11(10):458–464. doi: 10.1016/0166-2236(88)90199-3. [DOI] [PubMed] [Google Scholar]
- Stefani A., Spadoni F., Bernardi G. Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology. 1998;37(1):83–91. doi: 10.1016/s0028-3908(97)00189-5. [DOI] [PubMed] [Google Scholar]
- Stewart B. H., Kugler A. R., Thompson P. R., Bockbrader H. N. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm Res. 1993 Feb;10(2):276–281. doi: 10.1023/a:1018951214146. [DOI] [PubMed] [Google Scholar]
- Su T. Z., Lunney E., Campbell G., Oxender D. L. Transport of gabapentin, a gamma-amino acid drug, by system l alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes, and CHO cells. J Neurochem. 1995 May;64(5):2125–2131. doi: 10.1046/j.1471-4159.1995.64052125.x. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Seagar M. J., Jones J. F., Reber B. F., Catterall W. A. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5478–5482. doi: 10.1073/pnas.84.15.5478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C. P., Gee N. S., Su T. Z., Kocsis J. D., Welty D. F., Brown J. P., Dooley D. J., Boden P., Singh L. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res. 1998 Feb;29(3):233–249. doi: 10.1016/s0920-1211(97)00084-3. [DOI] [PubMed] [Google Scholar]
- Varadi G., Lory P., Schultz D., Varadi M., Schwartz A. Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. Nature. 1991 Jul 11;352(6331):159–162. doi: 10.1038/352159a0. [DOI] [PubMed] [Google Scholar]
- Williams M. E., Brust P. F., Feldman D. H., Patthi S., Simerson S., Maroufi A., McCue A. F., Veliçelebi G., Ellis S. B., Harpold M. M. Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science. 1992 Jul 17;257(5068):389–395. doi: 10.1126/science.1321501. [DOI] [PubMed] [Google Scholar]
- Wiser O., Trus M., Tobi D., Halevi S., Giladi E., Atlas D. The alpha 2/delta subunit of voltage sensitive Ca2+ channels is a single transmembrane extracellular protein which is involved in regulated secretion. FEBS Lett. 1996 Jan 22;379(1):15–20. doi: 10.1016/0014-5793(95)01475-6. [DOI] [PubMed] [Google Scholar]
- Witcher D. R., De Waard M., Sakamoto J., Franzini-Armstrong C., Pragnell M., Kahl S. D., Campbell K. P. Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science. 1993 Jul 23;261(5120):486–489. doi: 10.1126/science.8392754. [DOI] [PubMed] [Google Scholar]