Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 1;342(Pt 2):415–422.

Processing and functional display of the 86 kDa heterodimeric penicillin G acylase on the surface of phage fd.

R M Verhaert 1, J Van Duin 1, W J Quax 1
PMCID: PMC1220479  PMID: 10455029

Abstract

The large heterodimeric penicillin G acylase from Alcaligenes faecalis was displayed on the surface of phage fd. We fused the coding sequence (alpha subunit-internal peptide-beta subunit) to the gene of a phage coat protein. A modified g3p signal sequence was used to direct the polypeptide to the periplasm. Here we show that a heterodimeric enzyme can be expressed as a fusion protein that matures to an active biocatalyst connected to the coat protein of phage fd, resulting in a phage to which the beta-subunit is covalently linked and the alpha-subunit is non-covalently attached. The enzyme can be displayed either fused to the minor coat protein g3p or fused to the major coat protein g8p. In both cases the penicillin G acylase on the phage has the same Michaelis constant as its freely soluble counterpart, indicating a proper folding and catalytic activity of the displayed enzyme. The display of the heterodimer on phage not only allows its further use in protein engineering but also offers the possibility of applying this technology for the excretion of the enzyme into the extracellular medium, facilitating purification of the protein. With the example of penicillin acylase the upper limit for a protein to become functionally displayed by phage fd has been further explored. Polyvalent display was not observed despite the use of genetic constructs designed for this aim. These results are discussed in relation to the pore size being formed by the g4p multimer.

Full Text

The Full Text of this article is available as a PDF (178.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bossi L., Ruth J. R. The influence of codon context on genetic code translation. Nature. 1980 Jul 10;286(5769):123–127. doi: 10.1038/286123a0. [DOI] [PubMed] [Google Scholar]
  2. Brannigan J. A., Dodson G., Duggleby H. J., Moody P. C., Smith J. L., Tomchick D. R., Murzin A. G. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature. 1995 Nov 23;378(6555):416–419. doi: 10.1038/378416a0. [DOI] [PubMed] [Google Scholar]
  3. Cortese R., Felici F., Galfre G., Luzzago A., Monaci P., Nicosia A. Epitope discovery using peptide libraries displayed on phage. Trends Biotechnol. 1994 Jul;12(7):262–267. doi: 10.1016/0167-7799(94)90137-6. [DOI] [PubMed] [Google Scholar]
  4. Daumy G. O., Danley D., McColl A. S., Apostolakos D., Vinick F. J. Experimental evolution of penicillin G acylases from Escherichia coli and Proteus rettgeri. J Bacteriol. 1985 Sep;163(3):925–932. doi: 10.1128/jb.163.3.925-932.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daumy G. O., Danley D., McColl A. S. Role of protein subunits in Proteus rettgeri penicillin G acylase. J Bacteriol. 1985 Sep;163(3):1279–1281. doi: 10.1128/jb.163.3.1279-1281.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forney L. J., Wong D. C., Ferber D. M. Selection of amidases with novel substrate specificities from penicillin amidase of Escherichia coli. Appl Environ Microbiol. 1989 Oct;55(10):2550–2555. doi: 10.1128/aem.55.10.2550-2555.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991 Aug 11;19(15):4133–4137. doi: 10.1093/nar/19.15.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kutzbach C., Rauenbusch E. Preparation and general properties of crystalline penicillin acylase from Escherichia coli ATCC 11 105. Hoppe Seylers Z Physiol Chem. 1974 Jan;355(1):45–53. doi: 10.1515/bchm2.1974.355.1.45. [DOI] [PubMed] [Google Scholar]
  9. Linderoth N. A., Simon M. N., Russel M. The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science. 1997 Nov 28;278(5343):1635–1638. doi: 10.1126/science.278.5343.1635. [DOI] [PubMed] [Google Scholar]
  10. McCafferty J., Jackson R. H., Chiswell D. J. Phage-enzymes: expression and affinity chromatography of functional alkaline phosphatase on the surface of bacteriophage. Protein Eng. 1991 Dec;4(8):955–961. doi: 10.1093/protein/4.8.955. [DOI] [PubMed] [Google Scholar]
  11. Prieto I., Rodríguez M. C., Márquez G., Pérez-Aranda A., Barbero J. L. Changing glycine 21 for glutamic acid in the beta-subunit of penicillin G acylase from Kluyvera citrophila prevents protein maturation. Appl Microbiol Biotechnol. 1992 Feb;36(5):659–662. doi: 10.1007/BF00183245. [DOI] [PubMed] [Google Scholar]
  12. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roberts B. L., Markland W., Siranosian K., Saxena M. J., Guterman S. K., Ladner R. C. Protease inhibitor display M13 phage: selection of high-affinity neutrophil elastase inhibitors. Gene. 1992 Nov 2;121(1):9–15. doi: 10.1016/0378-1119(92)90156-j. [DOI] [PubMed] [Google Scholar]
  14. Russel M. Moving through the membrane with filamentous phages. Trends Microbiol. 1995 Jun;3(6):223–228. doi: 10.1016/s0966-842x(00)88929-5. [DOI] [PubMed] [Google Scholar]
  15. Schumacher G., Sizmann D., Haug H., Buckel P., Böck A. Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res. 1986 Jul 25;14(14):5713–5727. doi: 10.1093/nar/14.14.5713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985 Jun 14;228(4705):1315–1317. doi: 10.1126/science.4001944. [DOI] [PubMed] [Google Scholar]
  17. Soumillion P., Jespers L., Bouchet M., Marchand-Brynaert J., Winter G., Fastrez J. Selection of beta-lactamase on filamentous bacteriophage by catalytic activity. J Mol Biol. 1994 Apr 8;237(4):415–422. doi: 10.1006/jmbi.1994.1244. [DOI] [PubMed] [Google Scholar]
  18. Tesar M., Beckmann C., Röttgen P., Haase B., Faude U., Timmis K. N. Monoclonal antibody against pIII of filamentous phage: an immunological tool to study pIII fusion protein expression in phage display systems. Immunotechnology. 1995 May;1(1):53–64. doi: 10.1016/1380-2933(95)00005-4. [DOI] [PubMed] [Google Scholar]
  19. Verhaert R. M., Riemens A. M., van der Laan J. M., van Duin J., Quax W. J. Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis. Appl Environ Microbiol. 1997 Sep;63(9):3412–3418. doi: 10.1128/aem.63.9.3412-3418.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Widersten M., Mannervik B. Glutathione transferases with novel active sites isolated by phage display from a library of random mutants. J Mol Biol. 1995 Jul 7;250(2):115–122. doi: 10.1006/jmbi.1995.0362. [DOI] [PubMed] [Google Scholar]
  21. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES