Abstract
Accumulation of Ca(2+) by the Ca(2+)-ATPase of skeletal-muscle sarcoplasmic reticulum has been measured in reconstituted, sealed vesicles as a function of lipid composition. Measurements were performed in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) to eliminate any effects of H(+) transport; in the presence of FCCP, addition of valinomycin had no effect on the level or rate of accumulation of Ca(2+) showing that, in the presence of FCCP, no electrical potential built up across the membrane. Levels of accumulation were low when the phospholipid was dioleoylphosphatidylcholine (DOPC), even though DOPC supports high ATPase activity. Inclusion of 10 mol% anionic phospholipid [dioleoylphosphatidic acid (DOPA) or dioleoylphosphatidylserine (DOPS)] led to higher levels of accumulation of Ca(2+), 10 mol% being the optimum concentration. Cardiolipin or phosphatidylinositol 4-phosphate were more effective than DOPA or DOPS in increasing accumulation of Ca(2+). Effects of anionic phospholipids were seen in the presence of an ATP-regenerating system to remove ADP, and in the presence of phosphate within the reconstituted vesicles to precipitate calcium phosphate. Rates of passive leak of Ca(2+) from the reconstituted vesicles were slow. The Ca(2+)-accumulation process was simulated assuming either simple passive leak of Ca(2+) from the vesicles or assuming slippage on the ATPase, a process in which the phosphorylated intermediate of the ATPase releases bound Ca(2+) on the cytoplasmic rather than the lumenal side of the membrane. The experimental data fitted to a slippage model, with anionic phospholipids decreasing the rate of slippage.
Full Text
The Full Text of this article is available as a PDF (166.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burgess A. J., Matthews I., Grimes E. A., Mata A. M., Munkonge F. M., Lee A. G., East J. M. Chemical crosslinking and enzyme kinetics provide no evidence for a regulatory role for the 53 kDa glycoprotein of sarcoplasmic reticulum in calcium transport. Biochim Biophys Acta. 1991 Apr 26;1064(1):139–147. doi: 10.1016/0005-2736(91)90420-d. [DOI] [PubMed] [Google Scholar]
- Dalton K. A., East J. M., Mall S., Oliver S., Starling A. P., Lee A. G. Interaction of phosphatidic acid and phosphatidylserine with the Ca2+-ATPase of sarcoplasmic reticulum and the mechanism of inhibition. Biochem J. 1998 Feb 1;329(Pt 3):637–646. doi: 10.1042/bj3290637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duggleby R. C., East M., Lee A. G. Luminal dissociation of Ca2+ from the phosphorylated Ca2+-ATPase is sequential and gated by Mg2+. Biochem J. 1999 Apr 15;339(Pt 2):351–357. [PMC free article] [PubMed] [Google Scholar]
- Froud R. J., East J. M., Rooney E. K., Lee A. G. Binding of long-chain alkyl derivatives to lipid bilayers and to (Ca2+-Mg2+)-ATPase. Biochemistry. 1986 Nov 18;25(23):7535–7544. doi: 10.1021/bi00371a042. [DOI] [PubMed] [Google Scholar]
- Froud R. J., Lee A. G. A model for the phosphorylation of the Ca2+ + Mg2+-activated ATPase by phosphate. Biochem J. 1986 Jul 1;237(1):207–215. doi: 10.1042/bj2370207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gafni A., Boyer P. D. Characterization of sarcoplasmic reticulum adenosinetriphosphatase purified by selective column adsorption. Biochemistry. 1984 Sep 11;23(19):4362–4367. doi: 10.1021/bi00314a018. [DOI] [PubMed] [Google Scholar]
- Gould G. W., Colyer J., East J. M., Lee A. G. Silver ions trigger Ca2+ release by interaction with the (Ca2+-Mg2+)-ATPase in reconstituted systems. J Biol Chem. 1987 Jun 5;262(16):7676–7679. [PubMed] [Google Scholar]
- Gould G. W., East J. M., Froud R. J., McWhirter J. M., Stefanova H. I., Lee A. G. A kinetic model for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochem J. 1986 Jul 1;237(1):217–227. doi: 10.1042/bj2370217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould G. W., McWhirter J. M., East J. M., Lee A. G. A fast passive Ca2+ efflux mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles. Biochim Biophys Acta. 1987 Nov 2;904(1):45–54. doi: 10.1016/0005-2736(87)90085-x. [DOI] [PubMed] [Google Scholar]
- Heilmeyer L. M., Jr, Tölle H. G., Varsanyi M. Evidence for regulation of fast skeletal muscle sarcoplasmic reticular Ca2+-transport ATPase by phosphorylation and dephosphorylation. Ann N Y Acad Sci. 1982;402:578–579. doi: 10.1111/j.1749-6632.1982.tb25782.x. [DOI] [PubMed] [Google Scholar]
- Henderson I. M., Starling A. P., Wictome M., East J. M., Lee A. G. Binding of Ca2+ to the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum: kinetic studies. Biochem J. 1994 Feb 1;297(Pt 3):625–636. doi: 10.1042/bj2970625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inesi G., Kurzmack M., Verjovski-Almeida S. ATPase phosphorylation and calcium ion translocation in the transient state of sarcoplasmic reticulum activity. Ann N Y Acad Sci. 1978 Apr 28;307:224–227. doi: 10.1111/j.1749-6632.1978.tb41947.x. [DOI] [PubMed] [Google Scholar]
- Inesi G., Nakamoto R., Hymel L., Fleischer S. Functional characterization of reconstituted sarcoplasmic reticulum vesicles. J Biol Chem. 1983 Dec 25;258(24):14804–14809. [PubMed] [Google Scholar]
- Inesi G., de Meis L. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. J Biol Chem. 1989 Apr 5;264(10):5929–5936. [PubMed] [Google Scholar]
- Jencks W. P., Yang T., Peisach D., Myung J. Calcium ATPase of sarcoplasmic reticulum has four binding sites for calcium. Biochemistry. 1993 Jul 13;32(27):7030–7034. doi: 10.1021/bi00078a031. [DOI] [PubMed] [Google Scholar]
- Lacapère J. J., Bennett N., Dupont Y., Guillain F. pH and magnesium dependence of ATP binding to sarcoplasmic reticulum ATPase. Evidence that the catalytic ATP-binding site consists of two domains. J Biol Chem. 1990 Jan 5;265(1):348–353. [PubMed] [Google Scholar]
- Lau Y. H., Caswell A. H., Brunschwig J. P., Baerwald R. j., Garcia M. Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle. J Biol Chem. 1979 Jan 25;254(2):540–546. [PubMed] [Google Scholar]
- Lee A. G., Dalton K. A., Duggleby R. C., East J. M., Starling A. P. Lipid structure and Ca(2+)-ATPase function. Biosci Rep. 1995 Oct;15(5):289–298. doi: 10.1007/BF01788361. [DOI] [PubMed] [Google Scholar]
- Lee A. G. How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim Biophys Acta. 1998 Nov 10;1376(3):381–390. doi: 10.1016/s0304-4157(98)00010-0. [DOI] [PubMed] [Google Scholar]
- Levy D., Seigneuret M., Bluzat A., Rigaud J. L. Evidence for proton countertransport by the sarcoplasmic reticulum Ca2(+)-ATPase during calcium transport in reconstituted proteoliposomes with low ionic permeability. J Biol Chem. 1990 Nov 15;265(32):19524–19534. [PubMed] [Google Scholar]
- Lévy D., Gulik A., Bluzat A., Rigaud J. L. Reconstitution of the sarcoplasmic reticulum Ca(2+)-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochim Biophys Acta. 1992 Jun 30;1107(2):283–298. doi: 10.1016/0005-2736(92)90415-i. [DOI] [PubMed] [Google Scholar]
- McWhirter J. M., Gould G. W., East J. M., Lee A. G. Characterization of Ca2+ uptake and release by vesicles of skeletal-muscle sarcoplasmic reticulum. Biochem J. 1987 Aug 1;245(3):731–738. doi: 10.1042/bj2450731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michelangeli F., Orlowski S., Champeil P., Grimes E. A., East J. M., Lee A. G. Effects of phospholipids on binding of calcium to (Ca2(+)-Mg2(+)-ATPase. Biochemistry. 1990 Sep 11;29(36):8307–8312. doi: 10.1021/bi00488a015. [DOI] [PubMed] [Google Scholar]
- Milting H., Heilmeyer L. M., Jr, Thieleczek R. Phosphoinositides in membranes that build up the triads of rabbit skeletal muscle. FEBS Lett. 1994 May 30;345(2-3):211–218. doi: 10.1016/0014-5793(94)00440-4. [DOI] [PubMed] [Google Scholar]
- Myung J., Jencks W. P. Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent. Biochemistry. 1994 Jul 26;33(29):8775–8785. doi: 10.1021/bi00195a020. [DOI] [PubMed] [Google Scholar]
- Mészáros L. G., Bak J. Z. Coexistence of high- and low-affinity Ca2+ binding sites of the sarcoplasmic reticulum calcium pump. Biochemistry. 1993 Sep 28;32(38):10085–10088. doi: 10.1021/bi00089a025. [DOI] [PubMed] [Google Scholar]
- Mészáros L. G., Bak J. Simultaneous internalization and binding of calcium during the initial phase of calcium uptake by the sarcoplasmic reticulum Ca pump. Biochemistry. 1992 Feb 4;31(4):1195–1200. doi: 10.1021/bi00119a032. [DOI] [PubMed] [Google Scholar]
- Orlowski S., Champeil P. The two calcium ions initially bound to nonphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase can no longer be kinetically distinguished when they dissociate from phosphorylated ATPase toward the lumen. Biochemistry. 1991 Nov 26;30(47):11331–11342. doi: 10.1021/bi00111a020. [DOI] [PubMed] [Google Scholar]
- Petithory J. R., Jencks W. P. Phosphorylation of the calcium adenosinetriphosphatase of sarcoplasmic reticulum: rate-limiting conformational change followed by rapid phosphoryl transfer. Biochemistry. 1986 Aug 12;25(16):4493–4497. doi: 10.1021/bi00364a006. [DOI] [PubMed] [Google Scholar]
- Pickart C. M., Jencks W. P. Slow dissociation of ATP from the calcium ATPase. J Biol Chem. 1982 May 25;257(10):5319–5322. [PubMed] [Google Scholar]
- Rigaud J. L., Pitard B., Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta. 1995 Oct 10;1231(3):223–246. doi: 10.1016/0005-2728(95)00091-v. [DOI] [PubMed] [Google Scholar]
- Schäfer M., Behle G., Varsányi M., Heilmeyer L. M., Jr Ca2+ regulation of 1-(3-sn-phosphatidyl)-1D-myo-inositol 4-phosphate formation and hydrolysis on sarcoplasmic-reticular Ca2+-transport ATPase. A new principle of phospholipid turnover regulation. Biochem J. 1987 Nov 1;247(3):579–587. doi: 10.1042/bj2470579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starling A. P., East J. M., Lee A. G. Effects of phosphatidylcholine fatty acyl chain length on calcium binding and other functions of the (Ca(2+)-Mg2+)-ATPase. Biochemistry. 1993 Feb 16;32(6):1593–1600. doi: 10.1021/bi00057a025. [DOI] [PubMed] [Google Scholar]
- Starling A. P., East J. M., Lee A. G. Phosphatidylinositol 4-phosphate increases the rate of dephosphorylation of the phosphorylated Ca(2+)-ATPase. J Biol Chem. 1995 Jun 16;270(24):14467–14470. doi: 10.1074/jbc.270.24.14467. [DOI] [PubMed] [Google Scholar]
- Varsányi M., Messer M., Brandt N. R. Intracellular localization of inositol-phospholipid-metabolizing enzymes in rabbit fast-twitch skeletal muscle. Can D-myo-inositol 1,4,5-trisphosphate play a role in excitation-contraction coupling? Eur J Biochem. 1989 Feb 1;179(2):473–479. doi: 10.1111/j.1432-1033.1989.tb14577.x. [DOI] [PubMed] [Google Scholar]
- Yu X., Carroll S., Rigaud J. L., Inesi G. H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J. 1993 Apr;64(4):1232–1242. doi: 10.1016/S0006-3495(93)81489-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu X., Inesi G. Effects of anions on the Ca2+, H+ and electrical gradients formed by the sarcoplasmic reticulum ATPase in reconstituted proteoliposomes. FEBS Lett. 1993 Aug 16;328(3):301–304. doi: 10.1016/0014-5793(93)80948-t. [DOI] [PubMed] [Google Scholar]
- Yu X., Inesi G. Variable stoichiometric efficiency of Ca2+ and Sr2+ transport by the sarcoplasmic reticulum ATPase. J Biol Chem. 1995 Mar 3;270(9):4361–4367. doi: 10.1074/jbc.270.9.4361. [DOI] [PubMed] [Google Scholar]
- Yuan S., Arnold W., Jorgensen A. O. Biogenesis of transverse tubules: immunocytochemical localization of a transverse tubular protein (TS28) and a sarcolemmal protein (SL50) in rabbit skeletal muscle developing in situ. J Cell Biol. 1990 Apr;110(4):1187–1198. doi: 10.1083/jcb.110.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Foresta B., le Maire M., Orlowski S., Champeil P., Lund S., Møller J. V., Michelangeli F., Lee A. G. Membrane solubilization by detergent: use of brominated phospholipids to evaluate the detergent-induced changes in Ca2+-ATPase/lipid interaction. Biochemistry. 1989 Mar 21;28(6):2558–2567. doi: 10.1021/bi00432a032. [DOI] [PubMed] [Google Scholar]
- de Meis L. Fast efflux of Ca2+ mediated by the sarcoplasmic reticulum Ca2(+)-ATPase. J Biol Chem. 1991 Mar 25;266(9):5736–5742. [PubMed] [Google Scholar]
