Abstract
A 63.9 kDa periplasmic tetrahaem flavocytochrome c(3), designated Ifc(3), was found to be expressed in Shewanella frigidimarina NCIMB400 grown anaerobically with ferric citrate or ferric pyrophosphate as the sole terminal electron acceptor, but not in anaerobic cultures of the bacterium with other respiratory substrates. Ifc(3) was purified to homogeneity and revealed by biochemical, spectroscopic and primary structure analyses to contain four low-spin bis-His-ligated c(3)-haems, with midpoint reduction potentials of -73, -141, -174 and -259 mV. A low-potential flavin was present in the form of non-covalently bound FAD; the protein possessed a unidirectional fumarate reductase activity. Disruption of the chromosomal gene encoding Ifc(3), ifcA, did not lead to a significant change in the rate of Fe(3+) reduction in batch culture. However, during such growth the Ifc(3)-deficient mutant produced both a 35 kDa periplasmic c-type cytochrome and a 45 kDa membrane-associated c-type cytochrome at markedly higher levels than did the parent strain. Nucleotide sequencing data from directly upstream of ifcA indicated the presence of an open reading frame encoding a putative outer-membrane beta-barrel protein of 324 amino acid residues.
Full Text
The Full Text of this article is available as a PDF (210.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bamford V., Dobbin P. S., Lee S. C., Reilly A., Powell A. K., Richardson D. J., Hemmings A. M. Crystallization and preliminary X-ray crystallographic analysis of a periplasmic tetrahaem flavocytochrome c3 from Shewanella frigidimarina NCIMB400 which has fumarate reductase activity. Acta Crystallogr D Biol Crystallogr. 1999 Jun;55(Pt 6):1222–1225. doi: 10.1107/s0907444999004114. [DOI] [PubMed] [Google Scholar]
- Beliaev A. S., Saffarini D. A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol. 1998 Dec;180(23):6292–6297. doi: 10.1128/jb.180.23.6292-6297.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coates J. D., Phillips E. J., Lonergan D. J., Jenter H., Lovley D. R. Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol. 1996 May;62(5):1531–1536. doi: 10.1128/aem.62.5.1531-1536.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
- ELLS H. A. A colorimetric method for the assay of soluble succinic dehydrogenase and pyridinenucleotide-linked dehydrogenases. Arch Biochem Biophys. 1959 Dec;85:561–562. doi: 10.1016/0003-9861(59)90527-2. [DOI] [PubMed] [Google Scholar]
- Fellay R., Frey J., Krisch H. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene. 1987;52(2-3):147–154. doi: 10.1016/0378-1119(87)90041-2. [DOI] [PubMed] [Google Scholar]
- Fontecave M., Covès J., Pierre J. L. Ferric reductases or flavin reductases? Biometals. 1994 Jan;7(1):3–8. doi: 10.1007/BF00205187. [DOI] [PubMed] [Google Scholar]
- Gaspard S, Vazquez F, Holliger C. Localization and solubilization of the Iron(III) reductase of geobacter sulfurreducens . Appl Environ Microbiol. 1998 Sep;64(9):3188–3194. doi: 10.1128/aem.64.9.3188-3194.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon E. H., Pealing S. L., Chapman S. K., Ward F. B., Reid G. A. Physiological function and regulation of flavocytochrome c3, the soluble fumarate reductase from Shewanella putrefaciens NCIMB 400. Microbiology. 1998 Apr;144(Pt 4):937–945. doi: 10.1099/00221287-144-4-937. [DOI] [PubMed] [Google Scholar]
- Jones R. W., Garland P. B. Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem J. 1977 Apr 15;164(1):199–211. doi: 10.1042/bj1640199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R., Coates J. D. Bioremediation of metal contamination. Curr Opin Biotechnol. 1997 Jun;8(3):285–289. doi: 10.1016/s0958-1669(97)80005-5. [DOI] [PubMed] [Google Scholar]
- Lovley D. R., Phillips E. J., Lonergan D. J. Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens. Appl Environ Microbiol. 1989 Mar;55(3):700–706. doi: 10.1128/aem.55.3.700-706.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris C. J., Black A. C., Pealing S. L., Manson F. D., Chapman S. K., Reid G. A., Gibson D. M., Ward F. B. Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens. Biochem J. 1994 Sep 1;302(Pt 2):587–593. doi: 10.1042/bj3020587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris C. J., Gibson D. M., Ward F. B. Influence of respiratory substrate on the cytochrome content of Shewanella putrefaciens. FEMS Microbiol Lett. 1990 Jun 1;57(3):259–262. doi: 10.1016/0378-1097(90)90077-4. [DOI] [PubMed] [Google Scholar]
- Moser D. P., Nealson K. H. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol. 1996 Jun;62(6):2100–2105. doi: 10.1128/aem.62.6.2100-2105.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers C. R., Myers J. M. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol. 1997 Feb;179(4):1143–1152. doi: 10.1128/jb.179.4.1143-1152.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers C. R., Myers J. M. Ferric iron reduction-linked growth yields of Shewanella putrefaciens MR-1. J Appl Bacteriol. 1994 Mar;76(3):253–258. doi: 10.1111/j.1365-2672.1994.tb01624.x. [DOI] [PubMed] [Google Scholar]
- Myers C. R., Myers J. M. Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett Appl Microbiol. 1997 Sep;25(3):162–168. doi: 10.1046/j.1472-765x.1997.00196.x. [DOI] [PubMed] [Google Scholar]
- Myers C. R., Myers J. M. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cytochrome. Biochim Biophys Acta. 1997 Jun 12;1326(2):307–318. doi: 10.1016/s0005-2736(97)00034-5. [DOI] [PubMed] [Google Scholar]
- Myers C. R., Nealson K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 1988 Jun 3;240(4857):1319–1321. doi: 10.1126/science.240.4857.1319. [DOI] [PubMed] [Google Scholar]
- Myers J. M., Myers C. R. Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. Biochim Biophys Acta. 1998 Aug 14;1373(1):237–251. doi: 10.1016/s0005-2736(98)00111-4. [DOI] [PubMed] [Google Scholar]
- Pealing S. L., Black A. C., Manson F. D., Ward F. B., Chapman S. K., Reid G. A. Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry. 1992 Dec 8;31(48):12132–12140. doi: 10.1021/bi00163a023. [DOI] [PubMed] [Google Scholar]
- Pealing S. L., Cheesman M. R., Reid G. A., Thomson A. J., Ward F. B., Chapman S. K. Spectroscopic and kinetic studies of the tetraheme flavocytochrome c from Shewanella putrefaciens NCIMB400. Biochemistry. 1995 May 9;34(18):6153–6158. doi: 10.1021/bi00018a018. [DOI] [PubMed] [Google Scholar]
- Pereira I. A., Pacheco I., Liu M. Y., Legall J., Xavier A. V., Teixeira M. Multiheme cytochromes from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Eur J Biochem. 1997 Sep 1;248(2):323–328. doi: 10.1111/j.1432-1033.1997.00323.x. [DOI] [PubMed] [Google Scholar]
- Quandt J., Hynes M. F. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene. 1993 May 15;127(1):15–21. doi: 10.1016/0378-1119(93)90611-6. [DOI] [PubMed] [Google Scholar]
- Reid G. A., Gordon E. H., Hill A. E., Doherty M., Turner K., Holt R., Chapman S. K. Structure and function of flavocytochrome c3, the soluble fumarate reductase from Shewanella NCIMB400. Biochem Soc Trans. 1998 Aug;26(3):418–421. doi: 10.1042/bst0260418. [DOI] [PubMed] [Google Scholar]
- Reid G. A., Gordon E. H. Phylogeny of marine and freshwater Shewanella: reclassification of Shewanella putrefaciens NCIMB 400 as Shewanella frigidimarina. Int J Syst Bacteriol. 1999 Jan;49(Pt 1):189–191. doi: 10.1099/00207713-49-1-189. [DOI] [PubMed] [Google Scholar]
- Roldán M. D., Sears H. J., Cheesman M. R., Ferguson S. J., Thomson A. J., Berks B. C., Richardson D. J. Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J Biol Chem. 1998 Oct 30;273(44):28785–28790. doi: 10.1074/jbc.273.44.28785. [DOI] [PubMed] [Google Scholar]
- Saffarini D. A., Nealson K. H. Sequence and genetic characterization of etrA, an fnr analog that regulates anaerobic respiration in Shewanella putrefaciens MR-1. J Bacteriol. 1993 Dec;175(24):7938–7944. doi: 10.1128/jb.175.24.7938-7944.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeliger S., Cord-Ruwisch R., Schink B. A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol. 1998 Jul;180(14):3686–3691. doi: 10.1128/jb.180.14.3686-3691.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon J., Gross R., Klimmek O., Ringel M., Kröger A. A periplasmic flavoprotein in Wolinella succinogenes that resembles the fumarate reductase of Shewanella putrefaciens. Arch Microbiol. 1998 May;169(5):424–433. doi: 10.1007/s002030050593. [DOI] [PubMed] [Google Scholar]
- Spiro S. The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek. 1994;66(1-3):23–36. doi: 10.1007/BF00871630. [DOI] [PubMed] [Google Scholar]
- Steffes C., Ellis J., Wu J., Rosen B. P. The lysP gene encodes the lysine-specific permease. J Bacteriol. 1992 May;174(10):3242–3249. doi: 10.1128/jb.174.10.3242-3249.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
- Tsapin A. I., Nealson K. H., Meyers T., Cusanovich M. A., Van Beuumen J., Crosby L. D., Feinberg B. A., Zhang C. Purification and properties of a low-redox-potential tetraheme cytochrome c3 from Shewanella putrefaciens. J Bacteriol. 1996 Nov;178(21):6386–6388. doi: 10.1128/jb.178.21.6386-6388.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner K. L., Doherty M. K., Heering H. A., Armstrong F. A., Reid G. A., Chapman S. K. Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400. Biochemistry. 1999 Mar 16;38(11):3302–3309. doi: 10.1021/bi9826308. [DOI] [PubMed] [Google Scholar]
- Ward M. J., Lambden P. R., Heckels J. E. Sequence analysis and relationships between meningococcal class 3 serotype proteins and other porins from pathogenic and non-pathogenic Neisseria species. FEMS Microbiol Lett. 1992 Jul 15;73(3):283–289. doi: 10.1016/0378-1097(92)90644-4. [DOI] [PubMed] [Google Scholar]
