Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2025 Jun 20;45(6):1297–1306. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2025.06.19

旱莲苷A通过调控JAK2/STAT3通路抑制M1型巨噬细胞极化改善葡聚糖硫酸钠诱导的小鼠结肠炎

Ecliptasaponin A ameliorates DSS-induced colitis in mice by suppressing M1 macrophage polarization via inhibiting the JAK2/STAT3 pathway

NIU Minzhu 1,4,5,2, YIN Lixia 2, QIAO Tong 4, YIN Lin 2, ZHANG Keni 2, HU Jianguo 1,2, SONG Chuanwang 4, GENG Zhijun 1,3, LI Jing 1,2,
Editor: 林 萍
PMCID: PMC12204841  PMID: 40579143

Abstract

Objective

To investigate the effect of ecliptasaponin A (ESA) for alleviating dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice and the underlying mechanism.

Methods

Twenty-four male C57BL/6 mice (8-10 weeks old) were equally randomized into control group, DSS-induced IBD model group, and DSS+ESA (50 mg/kg) treatment group. Disease activity index (DAI), colon length and spleen index of the mice were measured, and intestinal pathology was examined with HE staining. The expressions of inflammatory mediators (TNF-α, IL-6, and iNOS) in the colon mucosa were detected using ELISA and RT-qPCR, and intestinal barrier integrity was assessed using AB-PAS staining and by detecting ZO-1 and claudin-1 expressions using immunofluorescence staining and Western blotting. In cultured RAW264.7 macrophages, the effects of treatment with 50 μmol/L ESA, alone or in combination with 20 μmol/L RO8191 (a JAK2/STAT3 pathway activator), on M1 polarization of the cells induced by LPS and IFN-γ stimulation and expressions of JAK2/STAT3 pathway proteins were analyzed using flow cytometry and Western blotting.

Results

In the mouse models of DSS-induced IBD, ESA treatment significantly alleviated body weight loss and colon shortening, reduced DAI, spleen index and histological scores, and ameliorated inflammatory cell infiltration in the colon tissue. ESA treatment also suppressed TNF‑α, IL-6 and iNOS expressions, protected the goblet cells and the integrity of the mucus and mechanical barriers, and upregulated the expressions of ZO-1 and claudin-1. ESA treatment obviously decreased CD86+ M1 polarization in the mesenteric lymph nodes of IBD mice and in LPS and IFN-γ-induced RAW264.7 cells, and significantly reduced p-JAK2 and p-STAT3 expressions in both the mouse models and RAW264.7 cells. Treatment with RO8191 caused reactivation of JAK2/STAT3 and strongly attenuated the inhibitory effect of ESA on CD86+ polarization in RAW264.7 cells.

Conclusion

ESA alleviates DSS-induced colitis in mice by suppressing JAK2/STAT3-mediated M1 macrophage polarization and mitigating inflammation-driven intestinal barrier damage.

Keywords: ecliptasaponin A, inflammatory bowel disease, intestinal barrier, macrophage polarization, JAK2/STAT3


炎症性肠病(IBD)是一种多发于20~40岁人群的慢性炎症性肠道疾病,主要分为克罗恩病(CD)与溃疡性结肠炎(UC),可发生在胃肠道的任何部位1。随着我国工业化和城市化的发展,IBD的发病率不断攀升,且疾病反复发作与结肠癌的风险增加有关,极大地加重了患者家庭及社会的负担23。目前IBD的发病机制仍不清楚,既往研究证实免疫应答的失调、肠道菌群改变、上皮屏障功能障碍、遗传易感性和环境等因素与IBD发病相关,其中肠道的固有免疫应答和上皮屏障功能障碍的恢复在IBD发病过程中起到关键作用45。巨噬细胞是固有免疫的前线细胞,大量的巨噬细胞浸润存在于IBD患者及动物模型中,在炎症的起始和消退过程中发挥重要作用67。巨噬细胞群可以通过经典活化的M1巨噬细胞或替代活化的M2巨噬细胞来区分,M1极化表型被认为与IBD的发作直接相关,抗TNF-α治疗可通过促进巨噬细胞M2极化来缓解疾病89。其中,M1型巨噬细胞可分泌大量炎症介质IL-1α、IL-1β和TNF-α等,这些炎症介质会加重肠道炎症状态,从而损害肠黏膜,破坏肠屏障的完整性,因此转换巨噬细胞表型和恢复肠屏障功能成为未来治疗IBD的有效策略10-12,目前IBD治疗方式多为手术与药物相结合,但药物毒副作用大,所以寻找高效低毒的药物对于治疗IBD至关重要。

中药化合物治疗IBD已成为热点,旱莲苷A(ESA)是一种三萜皂苷类化合物,来源于菊科鳢肠属植物墨旱莲,具有抗氧化应激、抗炎、抗肿瘤及免疫调节的药理学作用13-15。ESA可通过抑制HMGB1/TLR4/NF-κB通路的激活保护心肌缺血损伤,减少心肌细胞凋亡发挥抗炎作用16。但目前ESA在IBD方面的研究尚未见报道。本研究拟采用2.5%葡聚糖硫酸钠(DSS)诱导的小鼠急性IBD模型和体外诱导的小鼠单核巨噬细胞RAW264.7为研究对象,探究ESA对小鼠结肠炎的影响及其对巨噬细胞极化的作用机制。

1. 材料和方法

1.1. 材料

1.1.1. 动物及细胞来源

选择24只8~10周龄健康的雄性C57BL/6小鼠(江苏集萃药康生物科技股份有限公司),体质量22~27 g。小鼠生活于昼夜交替的SPF级环境。动物实验严格遵守操作规范,符合3R原则,并通过蚌埠医科大学伦理委员会批准(伦理批号:伦动科批字[2023]第427号)。RAW264.7细胞(OriCell)用不含双抗的完全培养基为10%FBS,在37 ℃,5%CO2的环境下培养,无酶无热源枪头处理细胞,贴壁长至50%~60%,PBS清洗,37 ℃胰酶消化4 min,加入培养基终止消化后反复吹打,进行传代及后续实验。

1.1.2. 试剂

旱莲苷A(上海陶术);DSS(MP Biomedicals);CCK-8试剂、HE染色试剂盒和AB-PAS染色试剂盒(北京索莱宝);DAPI和牛血清白蛋白(BSA)(Sigma);酶联免疫吸附试验(ELISA)试剂盒(武汉博士德);RNA提取试剂盒(诺唯赞生物),cDNA反转试剂盒、RT-qPCR试剂盒(Takara);BCA蛋白试剂盒(碧云天);PE-Cy7标记的F4/80、APC标记的CD86和Anti-Dog Fc Receptor Binding(Invitrogen);鼠抗ZO-1(proteintech);兔抗Claudin-1、兔抗JAK2、兔抗p-JAK2、兔抗STAT3、兔抗p-STAT3、山羊抗兔IgG H&L (FITC)和山羊抗鼠IgG H&L(Alexa Flour®555)(Abcam);鼠抗β-actin、HRP标记山羊抗兔IgG和HRP标记山羊抗鼠IgG(中杉金桥);RO8191(MCE);Base medium for cell culture和Fetal bovin serum(OriCell)。

1.2. 方法

1.2.1. IBD模型的建立及分组

24只小鼠随机分成3组:正常对照组(WT组)、DSS诱导模型组(DSS组)、ESA治疗组(DSS+ESA组),8只/组。小鼠适应性饲养1周后,WT组小鼠除正常饮水外,1次/d灌胃100 μL生理盐水,持续9 d;DSS组小鼠前6 d自由饮用2.5%DSS溶液,后3 d饮用纯水,9 d内1次/d灌胃100 μL生理盐水;DSS+ESA组小鼠诱导方式同DSS组,但持续9 d灌胃1次/d 100 μL ESA药液(50 mg/kg)进行干预。第10天造模干预结束后取检,结直肠组织沿纵轴切开后,一半在福尔马林中固定,一半刮取肠黏膜冻存在-80 ℃用于后续实验。

1.2.2. RAW264.7细胞的诱导及分组

RAW264.7细胞经消化重悬后,细胞分组为Control组(M0组)、M1组、ESA组、JAK2/STAT3通路激活剂RO8191组(RO8191组),其中M0组为不经处理的正常细胞,M1组为LPS(1 μg/mL)+IFN-γ(20 ng/mL)共处理RAW264.7细胞24 h17,ESA组为LPS(1 μg/mL)+IFN-γ(20 ng/mL)+ESA(50 μmol/L)共处理24 h,RO8191组为LPS(1 μg/mL)+IFN-γ(20 ng/mL)+ESA(50 μmol/L)+ RO8191 (20 μmol/L)共处理24 h18

1.2.3. 小鼠平均体质量,结肠长度、脾指数及DAI的评估

每日于灌胃前称小鼠体质量,观察小鼠粪便性状及隐血情况,观察毛发及活动状态。第10天取检,测量小鼠直肠近肛门处到盲肠部的长度并记录;分离出小鼠脾脏,称重后计算脾指数[脾指数=脾质量(mg)/小鼠体质量(g)];根据疾病活动指数(DAI)的评判标准19评估小鼠肠炎状况,分数与肠炎严重程度正相关。

1.2.4. HE、AB-PAS染色及组织病理学评分

取检后的结肠组织经福尔马林固定后,再经卷曲成瑞士卷、脱水、石蜡包埋,将蜡块组织切成3 μm厚度的石蜡切片用于后续实验。结肠组织经脱蜡水化后,按照HE和AB-PAS染色说明书进行操作,中性树脂封片,Olympus玻片扫描仪观察结果。对结肠组织进行组织病理学评分20,0分为结肠无炎症,隐窝、肠绒毛及肠上皮细胞均正常;1分为较少炎症细胞浸润在上皮下固有层,隐窝空间较小,肠绒毛轻度损伤,肠上皮局灶性损伤;2分为中等量的炎症细胞浸润在黏膜肌层,隐窝空间较大,中等量的肠绒毛损伤,肠上皮带状损伤;3分为大量的炎症细胞浸润在黏膜下层和固有肌层,隐窝空间极大,肠绒毛重度损伤,肠上皮弥漫性溃疡;4分为极严重的炎症细胞浸润和广泛的渗透,隐窝消失,大范围的肠绒毛损伤甚至消失。

1.2.5. ELISA检测炎症介质蛋白表达情况

取肠黏膜经RIPA裂解液裂解后,匀浆器碾磨,离心取上清,按照ELISA说明书进行稀释操作,酶标仪测量A 450 nm,经标准曲线计算出结肠组织中炎症介质TNF-α、IL-6、iNOS的蛋白含量。

1.2.6. RT-qPCR检测炎症介质的mRNA表达水平

结肠黏膜加入试剂盒裂解液,提取各组小鼠结肠组织总RNA,按照反转录试剂盒操作将RNA反转录为cDNA,RT-qPCR根据TB Green聚合酶链式反应试剂盒进行操作,测量体内各组肠黏膜组织中TNF-α、IL-6、iNOS的mRNA含量。PCR扩增反应采用两步法,程序为:预变性95 ℃ 30 s;变性95 ℃ 5 s,退火60 ℃ 10 s,40个循环。以GAPDH为内参,采用2-△△CT法计算炎症基因相对定量结果。PCR引物均由上海生工合成,TNF-α上游:5'-CAGGCGGTGCCTATGTCTC-3'、TNF-α下游:5'-C GATCACCCCGAAGTTCAGTAG-3'、IL-6上游:5'-TC CTACCCCAACTTCCAATGCTC-3'、IL-6下游:5'-TT GGATGGTCTTGGTCCTTAGCC-3'、iNOS上游:5'-G GAGTGACGGCAAACATGACT-3'、iNOS下游:5'-TC GATGCACAACTGGGTGAAC-3'、GAPDH上游:5'-A GGTCGGTGTGAACGGATTTG-3'、GAPDH下游:5'-GGGGTCGTTGATGGCAACA-3'。

1.2.7. CCK-8检测ESA对RAW264.7细胞活力的影响

将RAW264.7细胞以5×103/孔铺在96孔板,待细胞孵育2 h贴壁后吸去培养基,加入100 μL/孔含ESA的完全培养基培养24 h,浓度设置为0、6.25、12.5、25、50、100、200、400 μmol/L,再加入10 μL/孔CCK-8试剂混匀孵育2 h,酶标仪测量A 450 nm,根据公式计算:细胞活力=(A 加药组-A 空白组)/(A 对照组-A 空白组)×100%。

1.2.8. 流式细胞术检测体内外M1型巨噬细胞比例

取小鼠肠系膜淋巴结,研磨后过滤获得单个核细胞;RAW264.7细胞经诱导M1极化并使用ESA干预后,收集细胞;肠系膜淋巴结细胞及RAW264.7细胞使用FACS buffer清洗后,使用Anti-Dog Fc Receptor Binding室温封闭10 min,用PE-Cy7标记的F4/80、APC标记的CD86于室温避光染色30 min,FACS buffer清洗后,加入200 μL FACS buffer重悬细胞,使用BD FACSCanto Ⅱ 流式细胞仪采集数据,并使用FlowJo 10.8.1软件分析数据。

1.2.9. 免疫荧光检测肠道机械屏障

结肠石蜡切片经脱蜡水化、抗原修复、5%的BSA封闭、孵育一抗(ZO-1,1∶200;Claudin-1,1∶400),4 ℃过夜,第2天经PBS洗涤后,室温孵育荧光二抗[山羊抗兔IgG H&L (FITC)、山羊抗小鼠IgG H&L(Alexa Flour®555)],DAPI(1 μg/mL)复染,抗荧光淬灭剂封片,倒置荧光显微镜拍照。

1.2.10. Western blotting检测肠黏膜和RAW264.7细胞通路蛋白的表达及肠屏障蛋白

肠黏膜及RAW264.7加入RIPA裂解液、蛋白酶抑制剂和磷酸酶抑制剂,经匀浆后离心取上清。按BCA蛋白浓度测定试剂盒操作,酶标仪测量A 562 nm,计算出各组样本蛋白浓度。加入蛋白上样缓冲液,100 ℃变性,利用SDS-PAGE法电泳分离蛋白,转膜至PVDF膜上,5%的BSA封闭,孵育一抗(ZO-1,Claudin-1,1∶1000;JAK2,p-JAK2,STAT3,p-STAT3,β-actin,1∶3000),4 ℃摇床过夜。第2天经TBST洗膜后,孵育二抗[辣根酶标记山羊抗兔IgG(H+L),辣根酶标记山羊抗小鼠IgG(H+L),1∶3000],TBST洗膜后经ECL显影液处理后,凝胶成像系统中观察结果,利用Image J软件测量灰度值计算出蛋白相对表达量。

1.3. 统计学分析

用SPSS26.0进行统计学分析,符合正态分布且方差齐的计量资料以均数±标准差表示,两组比较采用t检验,多组比较采用单因素方差分析,P<0.05为差异具有统计学意义。

2. 结果

2.1. ESA对RAW264.7细胞活性的影响

CCK-8实验结果显示,ESA在0~400 μmol/L对RAW264.7巨噬细胞无明显毒性(P>0.05)。

2.2. ESA可抑制RAW264.7巨噬细胞M1型极化

M0组多为圆形巨噬细胞,偶见梭形;M1组巨噬细胞在经过诱导后出现大量长梭形和不规则巨噬细胞,带有空泡甚至伸出伪足;而ESA干预后长梭形和不规则细胞明显减少,典型的巨噬细胞炎症相关形态学也得以缓解(图1A)。流式细胞术结果发现,与M1组对比,ESA组F4/80+CD86+(M1型巨噬细胞)比例下降(P<0.05,图1B)。

图1.

图1

ESA显著降低体外模型M1型巨噬细胞的比例

Fig.1 ESA significantly reduces percentage of M1-type macrophages in RAW264.7 cells induced by LPS and IFN-γ. A: Morphology of macrophages from each group (scale bar=50 μm). B: Percentages of F4/80+CD86+ macrophages detected by flow cytometry. *P<0.05 vs M0 group. # P<0.05 vs M1 group.

2.3. ESA能缓解DSS诱导的结肠炎症状

与DSS组相比,DSS+ESA组干预的模型小鼠体质量下降减慢,DAI评分也降低(P<0.05,图2)。

图2.

图2

ESA对DSS模型小鼠疾病状态的影响

Fig.2 Effect of ESA on the disease status of DSS model mice. A: Changes of body weight. B: Changes of DAI scores. WT: Control group; DSS: DSS-induced model group; DSS+ESA: ESA treatment group. *P<0.05 vs WT group. # P<0.05 vs DSS group.

2.4. ESA能减轻DSS诱导的炎症损伤

相对于DSS组,DSS+ESA组小鼠结肠长度显著增加(P<0.05),结肠壁增厚,溃疡状态减轻,粪便成形(图3A、B);DSS+ESA组脾指数降低(P<0.05,图3C)。HE和AB-PAS染色结果显示,ESA可改善DSS诱导的炎症细胞浸润,恢复肠绒毛和隐窝结构与功能,减少溃疡病灶的形成,促进肠道酸性黏液蛋白的分泌,保护黏液屏障(图3D、E);组织病理学评分显示,DSS+ESA组评分低于DSS组(P<0.05,图3F)。

图3.

图3

ESA改善DSS诱导的结肠炎的病理表型

Fig.3 ESA improves pathological phenotype of DSS-induced colitis in mice. A, B: Representative images of mouse colons in each group. C: Changes of spleen index. D: HE staining of the colon tissues. E: AB-PAS staining of colon tissue from each groups. F: Histopathological scores in different groups. *P<0.05 vs WT group. # P<0.05 vs DSS group. (scale bar=100 μm).

2.5. ESA可降低DSS诱导的结肠炎中炎症介质表达

ELISA和RT-qPCR检测结果显示,与DSS组相比,DSS+ESA组炎症介质TNF-α、IL-6、iNOS的蛋白和mRNA表达水平均降低(P<0.05,图4)。

图4.

图4

ESA对DSS模型小鼠肠黏膜炎症介质的影响

Fig.4 Effect of ESA on intestinal mucosal inflammatory mediators in DSS model mice. A-C: Concentrations of proinflammatory cytokines TNF-α, iNOS and IL-6 in the colon tissues detected by ELISA. D-F: The mRNA levels of proinflammatory cytokines TNF-α, iNOS and IL-6 in different groups. *P<0.05 vs WT group. # P<0.05 vs DSS group.

2.6. ESA可保护肠道机械屏障

免疫荧光结果显示,DSS组小鼠紧密连接蛋白ZO-1与Claudin-1出现缺失与移位的情况以及蛋白表达下降,而ESA可逆转这种情况,促使紧密连接蛋白的表达增加(图5A)。Western blotting实验同样显示DSS+ESA组肠屏障蛋白表达高于DSS组(P<0.05,图5B、C)。

图5.

图5

ESA减轻DSS诱导的结肠炎的肠道屏障破坏

Fig.5 ESA improves gut barrier disruption in mice with DSS-induced colitis. A: Immunofluorescence staining showing expression of ZO-1 and claudin-1 proteins in the colon tissues. B, C: Relative expression levels of ZO-1 and claudin-1 proteins in colon mucosa detected by Western blotting. *P<0.05 vs WT group. # P<0.05 vs DSS group (scale bar=100 μm).

2.7. ESA可调节DSS诱导的M1巨噬细胞极化

流式细胞术结果显示,与WT组相比,DSS组M1型巨噬细胞标志物F4/80+CD86+比例增加,经ESA给药治疗后比例下降(P<0.05,图6)。

图6.

图6

ESA对DSS模型小鼠肠系膜淋巴结中M1型巨噬细胞的影响

Fig.6 Effect of ESA on M1 macrophages in the mesenteric lymph nodes of DSS model mice. The percentages of F4/80+CD86+ macrophages in mesenteric lymph nodes were detected by flow cytometry. *P<0.05 vs WT group. # P<0.05 vs DSS group.

2.8. ESA在体内外可抑制JAK2/STAT3信号通路活化

体内研究显示,DSS+ESA组JAK2/STAT3信号通路中p-JAK2及p-STAT3蛋白相对表达量低于DSS诱导模型组(P<0.05,图7A、B);体外实验同样发现ESA可降低M1型巨噬细胞中通路蛋白的表达水平(P<0.05,图7C、D)。

图7.

图7

ESA可抑制体内外JAK2/STAT3信号通路的磷酸化

Fig.7 ESA suppresses JAK2/STAT3 pathway activation by blocking its phosphorylation in vitro and in vivo. A, B: Relative expression levels of JAK2, p-JAK2, STAT3, and p-STAT3 proteins in mouse colon tissue detected by Western blotting (*P<0.05 vs WT group; # P<0.05 vs DSS group). C, D: Relative expression levels of JAK2, p-JAK2, STAT3, p-STAT3 proteins in RAW264.7 cells detected by Western blotting (*P<0.05 vs M0 group. # P<0.05 vs M1 group).

2.9. ESA通过阻断JAK2/STAT3信号通路抑制M1型巨噬细胞极化

经JAK2/STAT3信号通路激活剂RO8191干预后,Western blotting结果显示RO8191组p-JAK2和p-STAT3蛋白表达高于ESA组(P<0.05,图8A、B);镜下可见RO8191组梭形、空泡状、颗粒状巨噬细胞等极化形态增多(图8C);流式结果再次证实RO8191组F4/80+CD86+比例高于ESA组(P<0.05,图8D)。

图8.

图8

JAK2/STAT3信号通路参与ESA抑制M1型巨噬细胞极化

Fig.8 JAK2/STAT3 signaling pathway is involved in ESA-mediated inhibition of M1-type macrophage polarization of RAW264.7 cells. A, B: Relative expressions of JAK2, p-JAK2, STAT3 and p-STAT3 proteins detected by Western blotting in RAW264.7 cells. C: Morphology of the macrophages (×400). D: Proportion of F4/80+CD86+ cells in each group. *P<0.05 vs ESA group (Scale bar=50 μm).

3. 讨论

IBD发病症状多见腹痛、慢性腹泻、直肠出血等,极大降低了患者的生存质量21。目前IBD的治疗多根据疾病的严重程度和病变范围采用药物与手术相结合的办法,轻中度IBD患者常用的一线治疗药物是美沙拉嗪化合物,重度IBD患者药物治疗依赖于免疫抑制剂、生物制剂及小分子等,不同程度的IBD也采用药物联合疗法,但也不可避免出现药物的不良反应甚至无效,部分患者仍需外科手术介入2223。临床数据显示,结肠炎患者的结肠样本中巨噬细胞数量增加,肠道巨噬细胞在局部微环境中发挥着不同作用624。本研究从巨噬细胞极化方面入手,首先探讨了ESA对DSS诱导的结肠炎治疗作用及其机制,发现ESA可逆转小鼠局部的炎症病理状态,保护肠屏障;进一步研究发现ESA可直接作用于结肠组织巨噬细胞,抑制其M1型极化,体外实验同样发现ESA可抑制RAW264.7巨噬细胞的M1极化;于是再次通过体内外实验证明ESA至少部分通过调控JAK2/STAT3信号通路抑制M1型巨噬细胞极化,达到缓解结肠炎的目的,揭示了ESA治疗IBD的作用靶点。

三萜类化合物是一种结构复杂且很有价值的天然产物,迄今为止已有4种三萜类化合物被批准用于人类临床疾病的治疗,分别为智利皂皮树提取的疫苗佐剂QS-21、甘草次酸的合成衍生物甘珀酸、齐墩果酸提取的半合成三萜Omaveloxolone以及三萜类葡聚糖合成酶抑制剂Ibrexafungerp25。其中疫苗佐剂QS-21作为临床批准的天然三萜已被广泛用于带状疱疹、疟疾以及新冠等疫苗的制备26;甘珀酸在治疗消化性溃疡和口腔溃疡方面也具有几十年历史2728。除此之外国内外也相继报道三萜类化合物在IBD相关动物模型中也具有良好的干预效果,例如:研究发现灵芝酸A可通过影响肠道菌群来改善IBD,从而调节色氨酸代谢,增强芳烃受体活性,并最终改善肠道屏障功能29;有研究证实甘草酸二钾通过调节细胞外基质的重塑基因和恢复肠上皮屏障功能来改善DSS诱导的小鼠肠黏膜愈合30。三萜皂苷类化合物ESA是中药墨旱莲的有效成分之一,ESA对博来霉素诱导的肺纤维化具有保护作用,可通过减轻氧化应激、减轻肺组织炎症反应以及促进上皮-间质转化发挥作用;在骨关节炎的研究中发现ESA可降低骨关节炎相关分子MMP13、TNF-α、IL-1β和COX-2的表达发挥抗炎作用1331。但ESA对IBD的干预未见报道,ESA的抗炎作用暗示着其对IBD的治疗潜力,于是本文首次探索了ESA在DSS诱导的结肠炎模型中发挥的治疗作用,发现经ESA干预后,DSS诱导的小鼠体质量下降减少,DAI评分、脾指数及组织炎症评分显著降低,结肠长度显著增加。HE和AB-PAS结果发现ESA可缓解DSS诱导的炎症细胞浸润甚至肠道固有层的溃疡状态,恢复肠道隐窝及肠绒毛的完整结构,增加肠道酸性黏液蛋白的分泌,这些数据说明ESA可改善DSS诱导的IBD的临床及病理症状,但ESA通过何种途径干预结肠炎还需进一步探讨。

巨噬细胞是固有免疫系统中的关键效应细胞,在肠道组织中含量丰富且对于调节肠道稳态和炎症至关重要。巨噬细胞通过微环境变化等因素的刺激出现以M1和M2为代表的极化状态,在一定条件下可相互转化32。既往文献报道植物提取物治疗结肠炎可通过改变巨噬细胞极化状态来实现,研究证实天然异黄酮衍生物葛根素可通过抑制DSS诱导的M1型巨噬细胞极化进而缓解小鼠结肠炎33。M1型巨噬细胞是一种促炎表型,可由Th1细胞因子和Toll样受体配体诱导,并分泌促炎细胞因子,如IL-1β、IL-6、IL-12α、IL-23和TNF-α9。肠黏膜是由肠上皮细胞,上皮内基质和免疫细胞等构成,当肠道受到有害物质刺激时,健康状态下的固有层的免疫细胞可变为激活状态来保护肠屏障,当身体免疫紊乱时,巨噬细胞的过度激活分泌的炎症介质可造成肠黏膜屏障的损伤,从而破坏肠道稳态引发结肠炎等一系列疾病3435。因此,抑制M1型巨噬细胞极化和保护肠屏障成为治疗IBD的靶向治疗途径,本研究体外利用LPS+IFN-γ共同诱导RAW264.7巨噬细胞极化模型,发现ESA对RAW264.7细胞无毒性作用,在浓度为50 μmol/L时干预模型,经流式细胞术证实对M1型巨噬细胞有明显抑制作用,即M1型标志物CD86阳性比例下降。体内实验通过ELISA、RT-qPCR和流式细胞术实验证实,ESA可减低M1型巨噬细胞极化相关炎症介质TNF-α、IL-6、iNOS的蛋白含量和mRNA的表达,降低M1型标志物CD86的阳性比例,发挥抑制M1型极化的作用;同时利用免疫荧光和Western blotting实验发现ESA可保护肠道机械屏障,上调肠道紧密连接蛋白ZO-1和Claudin-1的表达,缓解DSS诱导的小鼠肠道紧密连接蛋白移位的情况。以上数据显示ESA具有抑制M1型巨噬细胞极化和保护肠屏障的作用,但未能证实ESA通过何种分子机制来发挥作用。

JAK2/STAT3通路是进化保守的细胞调控通路,通过细胞因子激活后可调节增殖、迁移及凋亡等生理过程36。其中IL-6是一种可来源于和作用于多种细胞的细胞因子,通过与β糖蛋白受体gp130结合激活JAK2/STAT3通路,参与细胞稳态调控37。据报道三萜类化合物(如三七皂苷R1)通过抑制IL-6分泌阻断JAK2/STAT3信号传导,从而减弱肿瘤恶性表型38。鉴于该通路在免疫调节中的核心地位,其已成为治疗IBD的重要靶点39。多项研究证实,靶向干预TLR4/JAK2/STAT3(Resatorvid)或直接抑制JAK2/STAT3(沙苑子苷A)可改善结肠炎病理进程4041。值得注意的是,ESA来源的墨旱莲已被证实可通过抑制JAK/STAT增强抗肿瘤免疫的机制提示其潜在肠道保护作用42。基于此,本研究探讨ESA是否通过IL-6/JAK2/STAT3轴调控巨噬细胞极化及肠屏障功能,实验数据显示:ESA显著降低DSS诱导肠炎模型中IL-6蛋白和mRNA的水平,这与前期研究保持一致16;体内外实验均证实ESA下调p-JAK2和p-STAT3蛋白表达;添加JAK2/STAT3通路激活剂RO8191可逆转ESA对M1巨噬细胞的抑制作用。以上数据表明,ESA负向调控JAK2/STAT3通路抑制M1型巨噬细胞极化,进而缓解IBD进展。

本研究为临床治疗IBD提供新的药物选择,为IBD的靶向治疗提供证据,也揭示了三萜类化合物ESA在IBD的治疗中的药用价值及生物学机制,但本实验仍存在些许不足:首先本实验采用的是DSS诱导的结肠炎,其临床症状与溃疡性结肠炎相似,但不能完全代替UC及CD患者的疾病状态;其次本研究仅从ESA可调节JAK2/STAT3信号通路活化抑制M1型巨噬细胞极化的方面入手,但不能排除ESA的其它潜在作用途径。最后,本研究主要聚焦于ESA对JAK2/STAT3信号通路的调控机制探索,受实验设计限制,未直接设置临床常用药物(如5-氨基水杨酸、糖皮质激素或生物制剂)的阳性对照组。但是通过系统对比既往文献中相同小鼠结肠炎模型的实验数据提示,ESA的治疗作用在小鼠结肠长度、结肠病理结果、结肠组织M1型巨噬细胞比例变化以及肠屏障的治疗等方面与5-氨基水杨酸治疗效果类似,甚至在体质量变化和DAI评分结果中优于5-氨基水杨酸4344

综上所述,ESA可负向调控JAK2/STAT3信号通路的激活,抑制体内外M1型巨噬细胞极化,保护肠屏障的完整性,从而实现对DSS诱导的IBD的治疗作用。

基金资助

安徽高校自然科学研究项目优秀青年项目(2022AH030138);安徽省临床医学研究转化项目(202427b10020088);蚌埠医科大学第一附属医院基金项目创新团队项目(BYYFY2022TD002)

参考文献

  • 1. Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease[J]. J Allergy Clin Immunol, 2020, 145(1): 16-27. doi: 10.1016/j.jaci.2019.11.003 [DOI] [PubMed] [Google Scholar]
  • 2. Ordás I, Eckmann L, Talamini M, et al. Ulcerative colitis[J]. Lancet, 2012, 380(9853): 1606-19. doi: 10.1016/s0140-6736(12)60150-0 [DOI] [PubMed] [Google Scholar]
  • 3. Xu L, He B, Sun Y, et al. Incidence of inflammatory bowel disease in urban China: a nationwide population-based study[J]. Clin Gastroenterol Hepatol, 2023, 21(13): 3379-86. doi: 10.1016/j.cgh.2023.08.013 [DOI] [PubMed] [Google Scholar]
  • 4. Wangchuk P, Yeshi K, Loukas A. Ulcerative colitis: clinical biomarkers, therapeutic targets, and emerging treatments[J]. Trends Pharmacol Sci, 2024, 45(10): 892-903. doi: 10.1016/j.tips.2024.08.003 [DOI] [PubMed] [Google Scholar]
  • 5. Saez A, Herrero-Fernandez B, Gomez-Bris R, et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24(2): 1526. doi: 10.3390/ijms24021526 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Zhou X, Li WY, Wang S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27(4): 1176-89. e5. doi: 10.1016/j.celrep.2019.03.028 [DOI] [PubMed] [Google Scholar]
  • 7. Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses[J]. Nat Immunol, 2011, 12(3): 231-8. doi: 10.1038/ni.1990 [DOI] [PubMed] [Google Scholar]
  • 8. Pan XH, Zhu Q, Pan LL, et al. Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis to therapy[J]. Pharmacol Ther, 2022, 238: 108176. doi: 10.1016/j.pharmthera.2022.108176 [DOI] [PubMed] [Google Scholar]
  • 9. Zhang K, Guo J, Yan W, et al. Macrophage polarization in inflammatory bowel disease[J]. Cell Commun Signal, 2023, 21(1): 367. doi: 10.1186/s12964-023-01386-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Ruan S, Xu L, Sheng Y, et al. Th1 promotes M1 polarization of intestinal macrophages to regulate colitis-related mucosal barrier damage[J]. Aging: Albany NY, 2023, 15(14): 6721-35. doi: 10.18632/aging.204629 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Guo HR, Guo H, Xie Y, et al. Mo3Se4 nanoparticle with ROS scavenging and multi-enzyme activity for the treatment of DSS-induced colitis in mice[J]. Redox Biol, 2022, 56: 102441. doi: 10.1016/j.redox.2022.102441 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Yang Y, Ma Q, Wang Q, et al. Mannose enhances intestinal immune barrier function and dextran sulfate sodium salt-induced colitis in mice by regulating intestinal microbiota[J]. Front Immunol, 2024, 15: 1365457. doi: 10.3389/fimmu.2024.1365457 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. You XY, Xue Q, Fang Y, et al. Preventive effects of Ecliptae Herba extract and its component, ecliptasaponin A, on bleomycin-induced pulmonary fibrosis in mice[J]. J Ethnopharmacol, 2015, 175: 172-80. doi: 10.1016/j.jep.2015.08.034 [DOI] [PubMed] [Google Scholar]
  • 14. Han J, Lv W, Sheng H, et al. Ecliptasaponin A induces apoptosis through the activation of ASK1/JNK pathway and autophagy in human lung cancer cells[J]. Ann Transl Med, 2019, 7(20): 539. doi: 10.21037/atm.2019.10.07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Xi FM, Li CT, Han J, et al. Thiophenes, polyacetylenes and terpenes from the aerial parts of Eclipata prostrata[J]. Bioorg Med Chem, 2014, 22(22): 6515-22. doi: 10.1016/j.bmc.2014.06.051 [DOI] [PubMed] [Google Scholar]
  • 16. Ge SM, Wu SH, Yin Q, et al. Ecliptasaponin A protects heart against acute ischemia-induced myocardial injury by inhibition of the HMGB1/TLR4/NF-κB pathway[J]. J Ethnopharmacol, 2024, 335: 118612. doi: 10.1016/j.jep.2024.118612 [DOI] [PubMed] [Google Scholar]
  • 17. Ge ST, Yang YT, Zuo LG, et al. Sotetsuflavone ameliorates Crohn’s disease-like colitis by inhibiting M1 macrophage-induced intestinal barrier damage via JNK and MAPK signalling[J]. Eur J Pharmacol, 2023, 940: 175464. doi: 10.1016/j.ejphar.2022.175464 [DOI] [PubMed] [Google Scholar]
  • 18. Lei X, Zou F, Tang X, et al. CD3D silencing alleviates diabetic nephropathy via inhibition of JAK/STAT pathway[J]. FASEB J, 2024, 38(21): e70169. doi: 10.1096/fj.202401879r [DOI] [PubMed] [Google Scholar]
  • 19. Wirtz S, Popp V, Kindermann M, et al. Chemically induced mouse models of acute and chronic intestinal inflammation[J]. Nat Protoc, 2017, 12(7): 1295-309. doi: 10.1038/nprot.2017.044 [DOI] [PubMed] [Google Scholar]
  • 20. Chougule PR, Sangaraju R, Patil PB, et al. Effect of ethyl gallate and propyl gallate on dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice: preventive and protective[J]. Inflammopharmacology, 2023, 31(4): 2103-20. doi: 10.1007/s10787-023-01254-5 [DOI] [PubMed] [Google Scholar]
  • 21. Kobayashi T, Siegmund B, Le Berre C, et al. Ulcerative colitis[J]. Nat Rev Dis Primers, 2020, 6: 74. doi: 10.1038/s41572-020-0205-x [DOI] [PubMed] [Google Scholar]
  • 22. Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis[J]. Lancet, 2023, 402(10401): 571-84. doi: 10.1016/s0140-6736(23)00966-2 [DOI] [PubMed] [Google Scholar]
  • 23. Dai N, Haidar O, Askari A, et al. Colectomy rates in ulcerative colitis: a systematic review and meta-analysis[J]. Dig Liver Dis, 2023, 55(1): 13-20. doi: 10.1016/j.dld.2022.08.039 [DOI] [PubMed] [Google Scholar]
  • 24. Asano K, Takahashi N, Ushiki M, et al. Intestinal CD169+ macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes[J]. Nat Commun, 2015, 6: 7802. doi: 10.1038/ncomms8802 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Goddard ZR, Searcey M, Osbourn A. Advances in triterpene drug discovery[J]. Trends Pharmacol Sci, 2024, 45(11): 964-8. doi: 10.1016/j.tips.2024.10.003 [DOI] [PubMed] [Google Scholar]
  • 26. Martin LBB, Kikuchi S, Rejzek M, et al. Complete biosynthesis of the potent vaccine adjuvant QS-21[J]. Nat Chem Biol, 2024, 20(4): 493-502. doi: 10.1038/s41589-023-01538-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Hirata K, Helal F, Hadgraft J, et al. Formulation of carbenoxolone for delivery to the skin[J]. Int J Pharm, 2013, 448(2): 360-5. doi: 10.1016/j.ijpharm.2013.03.045 [DOI] [PubMed] [Google Scholar]
  • 28. Chen Y, Hu Z, Li R, et al. The effects of carbenoxolone against experimental autoimmune encephalomyelitis in a mouse model[J]. Neuroimmunomodulation, 2020, 27(1): 19-27. doi: 10.1159/000505333 [DOI] [PubMed] [Google Scholar]
  • 29. Kou RW, Li ZQ, Wang JL, et al. Ganoderic acid a mitigates inflammatory bowel disease through modulation of AhR activity by microbial tryptophan metabolism[J]. J Agric Food Chem, 2024, 72(32): 17912-23. doi: 10.1021/acs.jafc.4c01166 [DOI] [PubMed] [Google Scholar]
  • 30. Stronati L, Palone F, Negroni A, et al. Dipotassium glycyrrhizate improves intestinal mucosal healing by modulating extracellular matrix remodeling genes and restoring epithelial barrier functions[J]. Front Immunol, 2019, 10: 939. doi: 10.3389/fimmu.2019.00939 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Hong GU, Lee JY, Kang H, et al. Inhibition of osteoarthritis-related molecules by isomucronulatol 7-O-β-d-glucoside and ecliptasaponin a in IL-1β-stimulated chondrosarcoma cell model[J]. Molecules, 2018, 23(11): E2807. doi: 10.3390/molecules23112807 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. De Schepper S, Verheijden S, Aguilera-Lizarraga J, et al. Self-maintaining gut macrophages are essential for intestinal homeostasis[J]. Cell, 2019, 176(3): 676. doi: 10.1016/j.cell.2019.01.010 [DOI] [PubMed] [Google Scholar]
  • 33. Tao Q, Liang Q, Fu Y, et al. Puerarin ameliorates colitis by direct suppression of macrophage M1 polarization in DSS mice[J]. Phytomedicine, 2024, 135: 156048. doi: 10.1016/j.phymed.2024.156048 [DOI] [PubMed] [Google Scholar]
  • 34. Westendorp BF, Büller NVJA, Karpus ON, et al. Indian hedgehog suppresses a stromal cell-driven intestinal immune response[J]. Cell Mol Gastroenterol Hepatol, 2018, 5(1): 67-82.e1. doi: 10.1016/j.jcmgh.2017.08.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Huang B, Chen Z, Geng L, et al. Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways[J]. Cell, 2019, 179(5): 1160-76.e24. doi: 10.1016/j.cell.2019.10.027 [DOI] [PubMed] [Google Scholar]
  • 36. Xue C, Yao Q, Gu X, et al. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer[J]. Signal Transduct Target Ther, 2023, 8(1): 204. doi: 10.1038/s41392-023-01468-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers[J]. Front Oncol, 2022, 12: 1023177. doi: 10.3389/fonc.2022.1023177 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Lu MN, Xie KG, Lu XZ, et al. Notoginsenoside R1 counteracts mesenchymal stem cell-evoked oncogenesis and doxorubicin resistance in osteosarcoma cells by blocking IL-6 secretion-induced JAK2/STAT3 signaling[J]. Investig New Drugs, 2021, 39(2): 416-25. doi: 10.1007/s10637-020-01027-9 [DOI] [PubMed] [Google Scholar]
  • 39. Salas A, Hernandez-Rocha C, Duijvestein M, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(6): 323-37. doi: 10.1038/s41575-020-0273-0 [DOI] [PubMed] [Google Scholar]
  • 40. Huang XL, Lin R, Liu H, et al. Resatorvid (TAK-242) ameliorates ulcerative colitis by modulating macrophage polarization and T helper cell balance via TLR4/JAK2/STAT3 signaling pathway[J]. Inflammation, 2024, 47(6): 2108-28. doi: 10.1007/s10753-024-02028-z [DOI] [PubMed] [Google Scholar]
  • 41. Wang Y, Song X, Xia Y, et al. Complanatuside A ameliorates 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis in mice by regulating the Th17/Treg balance via the JAK2/STAT3 signaling pathway[J]. FASEB J, 2024, 38(10): e23667. doi: 10.1096/fj.202301127rr [DOI] [PubMed] [Google Scholar]
  • 42. 罗雪菲, 王 伟, 赵晓芳, 等. 基于网络药理学探讨桃莲绞复方增强全成分肿瘤细胞疫苗抗结直肠癌作用分子机制[J]. 中草药, 2021, 52(2): 459-68. doi: 10.7501/j.issn.0253-2670.2021.02.020 34230730 [DOI] [Google Scholar]
  • 43. Xiao QP, Luo L, Zhu XY, et al. Formononetin alleviates ulcerative colitis via reshaping the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner[J]. Phytomedicine, 2024, 135: 156153. doi: 10.1016/j.phymed.2024.156153 [DOI] [PubMed] [Google Scholar]
  • 44. Xiao QP, Huang JQ, Zhu XY, et al. Formononetin ameliorates dextran sulfate sodium-induced colitis via enhancing antioxidant capacity, promoting tight junction protein expression and reshaping M1/M2 macrophage polarization balance[J]. Int Immuno-pharmacol, 2024, 142: 113174. doi: 10.1016/j.intimp.2024.113174 [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES