Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 1;342(Pt 2):465–472.

Overexpression of the FAD-binding domain of the sulphite reductase flavoprotein component from Escherichia coli and its inhibition by iodonium diphenyl chloride.

J Covès 1, C Lebrun 1, G Gervasi 1, P Dalbon 1, M Fontecave 1
PMCID: PMC1220485  PMID: 10455035

Abstract

SiR-FP43, the NADPH- and FAD-binding domain of the Escherichia coli sulphite reductase flavoprotein component (SiR-FP), has been overexpressed and characterized. It folds independently, retaining FAD as a cofactor and the catalytic properties associated with the presence of this cofactor. Iodonium diphenyl chloride (IDP) was shown to be a very efficient inhibitor of SiR-FP43 and SiR-FP60, the monomeric form of SiR-FP, containing both FMN and FAD as cofactors (K(i) = 18.5 +/- 5 microM, maximal inactivation rate = 0.053 +/- 0.005 s(-1)). In both cases, inactivation was shown to result from covalent binding of a phenyl group to FAD exclusively, in marked contrast with previous results obtained with cytochrome P450 reductase (CPR), where FMN and a tryptophan were phenylated, but not FAD. However, our kinetic analyses are in agreement with the inhibition mechanism demonstrated with CPR [Tew (1993) Biochemistry 32, 10209-10215]. Nine different FAD phenylated adducts were isolated and, for the first time, two FAD phenylated adducts were identified directly after extraction from a protein. Taken together, our results have shown that flavoprotein inactivation by IDP is not a reliable indicator for a flavin radical intermediate in catalysis.

Full Text

The Full Text of this article is available as a PDF (170.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnould S., Berthon J. L., Hubert C., Dias M., Cibert C., Mornet R., Camadro J. M. Kinetics of protoporphyrinogen oxidase inhibition by diphenyleneiodonium derivatives. Biochemistry. 1997 Aug 19;36(33):10178–10184. doi: 10.1021/bi970549j. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brandsch R., Bichler V. Covalent flavinylation of 6-hydroxy-D-nicotine oxidase involves an energy-requiring process. FEBS Lett. 1987 Nov 16;224(1):121–124. doi: 10.1016/0014-5793(87)80433-7. [DOI] [PubMed] [Google Scholar]
  4. Coves J., Zeghouf M., Macherel D., Guigliarelli B., Asso M., Fontecave M. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli. Biochemistry. 1997 May 13;36(19):5921–5928. doi: 10.1021/bi9623744. [DOI] [PubMed] [Google Scholar]
  5. Covès J., Nivière V., Eschenbrenner M., Fontecave M. NADPH-sulfite reductase from Escherichia coli. A flavin reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem. 1993 Sep 5;268(25):18604–18609. [PubMed] [Google Scholar]
  6. Crane B. R., Siegel L. M., Getzoff E. D. Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products. Biochemistry. 1997 Oct 7;36(40):12120–12137. doi: 10.1021/bi971066i. [DOI] [PubMed] [Google Scholar]
  7. Doussière J., Vignais P. V. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Eur J Biochem. 1992 Aug 15;208(1):61–71. doi: 10.1111/j.1432-1033.1992.tb17159.x. [DOI] [PubMed] [Google Scholar]
  8. Eschenbrenner M., Covès J., Fontecave M. NADPH-sulfite reductase flavoprotein from Escherichia coli: contribution to the flavin content and subunit interaction. FEBS Lett. 1995 Oct 23;374(1):82–84. doi: 10.1016/0014-5793(95)01081-o. [DOI] [PubMed] [Google Scholar]
  9. Eschenbrenner M., Covès J., Fontecave M. The flavin reductase activity of the flavoprotein component of sulfite reductase from Escherichia coli. A new model for the protein structure. J Biol Chem. 1995 Sep 1;270(35):20550–20555. doi: 10.1074/jbc.270.35.20550. [DOI] [PubMed] [Google Scholar]
  10. Ghisla S., Massey V., Lhoste J. M., Mayhew S. G. Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry. 1974 Jan 29;13(3):589–597. doi: 10.1021/bi00700a029. [DOI] [PubMed] [Google Scholar]
  11. Iyanagi T., Makino R., Anan F. K. Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase. Biochemistry. 1981 Mar 31;20(7):1722–1730. doi: 10.1021/bi00510a004. [DOI] [PubMed] [Google Scholar]
  12. KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
  13. Karplus P. A., Bruns C. M. Structure-function relations for ferredoxin reductase. J Bioenerg Biomembr. 1994 Feb;26(1):89–99. doi: 10.1007/BF00763221. [DOI] [PubMed] [Google Scholar]
  14. Kemal C., Bruice T. C. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: preliminary studies of a model for bacterial luciferase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):995–999. doi: 10.1073/pnas.73.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. O'Donnell B. V., Tew D. G., Jones O. T., England P. J. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J. 1993 Feb 15;290(Pt 1):41–49. doi: 10.1042/bj2900041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Donnell V. B., Smith G. C., Jones O. T. Involvement of phenyl radicals in iodonium inhibition of flavoenzymes. Mol Pharmacol. 1994 Oct;46(4):778–785. [PubMed] [Google Scholar]
  18. Ostrowski J., Barber M. J., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem. 1989 Sep 25;264(27):15796–15808. [PubMed] [Google Scholar]
  19. Porter T. D., Kasper C. B. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry. 1986 Apr 8;25(7):1682–1687. doi: 10.1021/bi00355a036. [DOI] [PubMed] [Google Scholar]
  20. Ragan C. I., Bloxham D. P. Specific labelling of a constituent polypeptide of bovine heart mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone reductase by the inhibitor diphenyleneiodonium. Biochem J. 1977 Jun 1;163(3):605–615. doi: 10.1042/bj1630605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Siegel L. M., Faeder E. J., Kamin H. Flavin interaction in NADPH-sulfite reductase. Z Naturforsch B. 1972 Sep;27(9):1087–1089. doi: 10.1515/znb-1972-0929. [DOI] [PubMed] [Google Scholar]
  22. Stuehr D. J., Fasehun O. A., Kwon N. S., Gross S. S., Gonzalez J. A., Levi R., Nathan C. F. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 1991 Jan;5(1):98–103. doi: 10.1096/fasebj.5.1.1703974. [DOI] [PubMed] [Google Scholar]
  23. Tew D. G. Inhibition of cytochrome P450 reductase by the diphenyliodonium cation. Kinetic analysis and covalent modifications. Biochemistry. 1993 Sep 28;32(38):10209–10215. doi: 10.1021/bi00089a042. [DOI] [PubMed] [Google Scholar]
  24. Vermilion J. L., Ballou D. P., Massey V., Coon M. J. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem. 1981 Jan 10;256(1):266–277. [PubMed] [Google Scholar]
  25. WHITBY L. G. A new method for preparing flavin-adenine dinucleotide. Biochem J. 1953 Jun;54(3):437–442. doi: 10.1042/bj0540437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wang M., Roberts D. L., Paschke R., Shea T. M., Masters B. S., Kim J. J. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8411–8416. doi: 10.1073/pnas.94.16.8411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yea C. M., Cross A. R., Jones O. T. Purification and some properties of the 45 kDa diphenylene iodonium-binding flavoprotein of neutrophil NADPH oxidase. Biochem J. 1990 Jan 1;265(1):95–100. doi: 10.1042/bj2650095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zeghouf M., Fontecave M., Macherel D., Covès J. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors. Biochemistry. 1998 Apr 28;37(17):6114–6123. doi: 10.1021/bi9728699. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES