Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):527–535.

Structural determination of a 5-acetamido-3,5,7, 9-tetradeoxy-7-(3-hydroxybutyramido)-L-glycero-L-manno-nonulos onic acid-containing homopolysaccharide isolated from Sinorhizobium fredii HH103.

A M Gil-Serrano 1, M A Rodríguez-Carvajal 1, P Tejero-Mateo 1, J L Espartero 1, M Menendez 1, J Corzo 1, J E Ruiz-Sainz 1, A M BuendíA-Clavería 1
PMCID: PMC1220493  PMID: 10477263

Abstract

The structure of a polysaccharide from Sinorhizobium fredii HH103 has been determined. This polysaccharide was isolated by following the protocol for lipopolysaccharide extraction. On the basis of monosaccharide analysis, methylation analysis, fast atom bombardment MS, matrix-assisted laser desorption ionization MS, electron-impact high-resolution MS, one-dimensional (1)H-NMR and (13)C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a homopolymer of a 3:1 mixture of 5-acetamido-3,5,7, 9-tetradeoxy-7-[(R)- and (S)-3-hydroxybutyramido]-l-glycero-l-manno-nonulosonic acid. The sugar residues are attached via a glycosidic linkage to the OH group of the 3-hydroxybutyramido substituent and thus the monomers are linked via both glycosidic and amidic linkages. In contrast with the Sinorhizobium K-antigens previously reported, which are composed of a disaccharide repeating unit, the K-antigen polysacharide of S. fredii HH103 is a homopolysaccharide.

Full Text

The Full Text of this article is available as a PDF (206.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelbaum E. R., McLoughlin T. J., O'Connell M., Chartrain N. Expression of symbiotic genes of Rhizobium japonicum USDA 191 in other rhizobia. J Bacteriol. 1985 Jul;163(1):385–388. doi: 10.1128/jb.163.1.385-388.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Battisti L., Lara J. C., Leigh J. A. Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5625–5629. doi: 10.1073/pnas.89.12.5625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
  4. Corzo J., Pérez-Galdona R., León-Barrios M., Gutiérrez-Navarro A. M. Alcian blue fixation allows silver staining of the isolated polysaccharide component of bacterial lipopolysaccharides in polyacrylamide gels. Electrophoresis. 1991 Jun;12(6):439–441. doi: 10.1002/elps.1150120611. [DOI] [PubMed] [Google Scholar]
  5. Dénarié J., Debellé F., Promé J. C. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem. 1996;65:503–535. doi: 10.1146/annurev.bi.65.070196.002443. [DOI] [PubMed] [Google Scholar]
  6. Díaz-Marrero A. R., Santamaria M., Poveda A., Jiménez-Barbero J., Corzo J. Electrophoretic behavior and size distribution of the acidic polysaccharides produced by the bacteria Bradyrhizobium (Chamaecytisus) strain BGA-1 and Bradyrhizobium japonicum USDA 110. Electrophoresis. 1998 Nov;19(15):2621–2624. doi: 10.1002/elps.1150191509. [DOI] [PubMed] [Google Scholar]
  7. Forsberg L. S., Reuhs B. L. Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp. J Bacteriol. 1997 Sep;179(17):5366–5371. doi: 10.1128/jb.179.17.5366-5371.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gil-Serrano A. M., Rodríguez-Carvajal M. A., Tejero-Mateo P., Espartero J. L., Thomas-Oates J., Ruiz-Sainz J. E., Buendía-Clavería A. M. Structural determination of a 5-O-methyl-deaminated neuraminic acid (Kdn)-containing polysaccharide isolated from Sinorhizobium fredii. Biochem J. 1998 Sep 15;334(Pt 3):585–594. doi: 10.1042/bj3340585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Helbig J. H., Lück P. C., Knirel Y. A., Witzleb W., Zähringer U. Molecular characterization of a virulence-associated epitope on the lipopolysaccharide of Legionella pneumophila serogroup 1. Epidemiol Infect. 1995 Aug;115(1):71–78. doi: 10.1017/s0950268800058131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jarvis B. D., Downer H. L., Young J. P. Phylogeny of fast-growing soybean-nodulating rhizobia support synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int J Syst Bacteriol. 1992 Jan;42(1):93–96. doi: 10.1099/00207713-42-1-93. [DOI] [PubMed] [Google Scholar]
  11. Keyser H. H., Bohlool B. B., Hu T. S., Weber D. F. Fast-growing rhizobia isolated from root nodules of soybean. Science. 1982 Mar 26;215(4540):1631–1632. doi: 10.1126/science.215.4540.1631. [DOI] [PubMed] [Google Scholar]
  12. Kittelberger R., Hilbink F. Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels. J Biochem Biophys Methods. 1993 Feb;26(1):81–86. doi: 10.1016/0165-022x(93)90024-i. [DOI] [PubMed] [Google Scholar]
  13. Knirel Y. A., Helbig J. H., Zähringer U. Structure of a decasaccharide isolated by mild acid degradation and dephosphorylation of the lipopolysaccharide of Pseudomonas fluorescens strain ATCC 49271. Carbohydr Res. 1996 Mar 22;283:129–139. doi: 10.1016/0008-6215(95)00401-7. [DOI] [PubMed] [Google Scholar]
  14. Knirel Y. A., Kocharova N. A., Shashkov A. S., Dmitriev B. A., Kochetkov N. K., Stanislavsky E. S., Mashilova G. M. Somatic antigens of Pseudomonas aeruginosa. The structure of O-specific polysaccharide chains of the lipopolysaccharides from P. aeruginosa O5 (Lányi) and immunotype 6 (Fisher). Eur J Biochem. 1987 Mar 16;163(3):639–652. doi: 10.1111/j.1432-1033.1987.tb10913.x. [DOI] [PubMed] [Google Scholar]
  15. Knirel Y. A., Kocharova N. A., Shashkov A. S., Kochetkov N. K. The structure of the Pseudomonas aeruginosa immunotype 6 O-antigen: isolation and identification of 5-acetamido-3,5,7,9-tetradeoxy-7-formamido-L-glycero-L-manno- nonuloson ic acid. Carbohydr Res. 1986 Jan 1;145(2):C1–C4. doi: 10.1016/s0008-6215(00)90444-0. [DOI] [PubMed] [Google Scholar]
  16. Knirel Y. A., Moll H., Helbig J. H., Zähringer U. Chemical characterization of a new 5,7-diamino-3,5,7,9-tetradeoxynonulosonic acid released by mild acid hydrolysis of the Legionella pneumophila serogroup 1 lipopolysaccharide. Carbohydr Res. 1997 Oct 28;304(1):77–79. doi: 10.1016/s0008-6215(97)00211-5. [DOI] [PubMed] [Google Scholar]
  17. Knirel Y. A., Rietschel E. T., Marre R., Zähringer U. The structure of the O-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide. Eur J Biochem. 1994 Apr 1;221(1):239–245. doi: 10.1111/j.1432-1033.1994.tb18734.x. [DOI] [PubMed] [Google Scholar]
  18. Knirel Y. A., Vinogradov E. V., Shashkov A. S., Dmitriev B. A., Kochetkov N. K., Stanislavsky E. S., Mashilova G. M. Somatic antigens of Pseudomonas aeruginosa. The structure of O-specific polysaccharide chains of P. aeruginosa O10 (Lányi) lipopolysaccharides. Eur J Biochem. 1986 May 15;157(1):129–138. doi: 10.1111/j.1432-1033.1986.tb09648.x. [DOI] [PubMed] [Google Scholar]
  19. Knirel Y. A., Vinogradov E. V., Shashkov A. S., Dmitriev B. A., Kochetkov N. K., Stanislavsky E. S., Mashilova G. M. Somatic antigens of Pseudomonas aeruginosa. The structure of the O-specific polysaccharide chain of the lipopolysaccharide from P. aeruginosa O13 (Lányi). Eur J Biochem. 1987 Mar 16;163(3):627–637. doi: 10.1111/j.1432-1033.1987.tb10912.x. [DOI] [PubMed] [Google Scholar]
  20. Köplin R., Wang G., Hötte B., Priefer U. B., Pühler A. A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol. 1993 Dec;175(24):7786–7792. doi: 10.1128/jb.175.24.7786-7792.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lamrabet Y., Bellogín R. A., Cubo T., Espuny R., Gil A., Krishnan H. B., Megias M., Ollero F. J., Pueppke S. G., Ruiz-Sainz J. E. Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. Mol Plant Microbe Interact. 1999 Mar;12(3):207–217. doi: 10.1094/MPMI.1999.12.3.207. [DOI] [PubMed] [Google Scholar]
  22. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods. 1990 Jan 24;126(1):109–117. doi: 10.1016/0022-1759(90)90018-q. [DOI] [PubMed] [Google Scholar]
  23. Mock K. K., Davey M., Cottrell J. S. The analysis of underivatized oligosaccharides by matrix-assisted laser desorption mass spectrometry. Biochem Biophys Res Commun. 1991 Jun 14;177(2):644–651. doi: 10.1016/0006-291x(91)91837-3. [DOI] [PubMed] [Google Scholar]
  24. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  25. Vinogradov E. V., Shashkov A. S., Knirel Y. A., Kochetkov N. K., Dabrowski J., Grosskurth H., Stanislavsky E. S., Kholodkova E. V. The structure of the O-specific polysaccharide chain of the lipopolysaccharide of Salmonella arizonae O61. Carbohydr Res. 1992 Jul 2;231:1–11. doi: 10.1016/0008-6215(92)84002-a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES