Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):597–604.

Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis.

P J Mulquiney 1, P W Kuchel 1
PMCID: PMC1220500  PMID: 10477270

Abstract

This is the third of three papers [see also Mulquiney, Bubb and Kuchel (1999) Biochem. J. 342, 565-578; Mulquiney and Kuchel (1999) Biochem. J. 342, 579-594] for which the general goal was to explain the regulation and control of 2,3-bisphosphoglycerate (2,3-BPG) metabolism in human erythrocytes. 2,3-BPG is a major modulator of haemoglobin oxygen affinity and hence is vital in blood oxygen transport. A detailed mathematical model of erythrocyte metabolism was presented in the first two papers. The model was refined through an iterative loop of experiment and simulation and it was used to predict outcomes that are consistent with the metabolic behaviour of the erythrocyte under a wide variety of experimental and physiological conditions. For the present paper, the model was examined using computer simulation and Metabolic Control Analysis. The analysis yielded several new insights into the regulation and control of 2,3-BPG metabolism. Specifically it was found that: (1) the feedback inhibition of hexokinase and phosphofructokinase by 2, 3-BPG are equally as important as the product inhibition of 2,3-BPG synthase in controlling the normal in vivo steady-state concentration of 2,3-BPG; (2) H(+) and oxygen are effective regulators of 2,3-BPG concentration and that increases in 2,3-BPG concentrations are achieved with only small changes in glycolytic rate; (3) these two effectors exert most of their influence through hexokinase and phosphofructokinase; (4) flux through the 2,3-BPG shunt changes in absolute terms in response to different energy demands placed on the cell. This response of the 2,3-BPG shunt contributes an [ATP]-stabilizing effect. A 'cost' of this is that 2, 3-BPG concentrations are very sensitive to the energy demand of the cell and; (5) the flux through the 2,3-BPG shunt does not change in response to different non-glycolytic demands for NADH.

Full Text

The Full Text of this article is available as a PDF (132.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astrup P., Rörth M., Thorshauge C. Dependency on acid-base status of oxyhemoglobin dissociation and 2,3-diphosphoglycerate level in human erythrocytes. II. In vivo studies. Scand J Clin Lab Invest. 1970 Aug;26(1):47–52. doi: 10.3109/00365517009049213. [DOI] [PubMed] [Google Scholar]
  2. Ataullakhanov A. I., Ataullakhanov F. I., Vitvitskii V. M., Zhabotinskii A. M., Pichugin A. V. 2,3-difosfoglitseratnyi shunt i stabilizatsiia urovnia ATP v éritrotsitakh mlekopitaiushchikh. Biokhimiia. 1985 Jun;50(6):1005–1011. [PubMed] [Google Scholar]
  3. Benesch R., Benesch R. E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun. 1967 Jan 23;26(2):162–167. doi: 10.1016/0006-291x(67)90228-8. [DOI] [PubMed] [Google Scholar]
  4. Black J. A., Acott K. M., Bufton L. A futile cycle in erythrocyte glycolysis. Biochim Biophys Acta. 1985 Nov 27;810(2):246–251. doi: 10.1016/0005-2728(85)90139-2. [DOI] [PubMed] [Google Scholar]
  5. Chanutin A., Curnish R. R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys. 1967 Jul;121(1):96–102. doi: 10.1016/0003-9861(67)90013-6. [DOI] [PubMed] [Google Scholar]
  6. Clegg J. S. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol. 1984 Feb;246(2 Pt 2):R133–R151. doi: 10.1152/ajpregu.1984.246.2.R133. [DOI] [PubMed] [Google Scholar]
  7. Darley J. H. The study of magnesium supplement to stored blood for the preservation of 2,3-diphosphoglycerate in red cells. Med Lab Sci. 1979 Apr;36(2):121–140. [PubMed] [Google Scholar]
  8. Duhm J. Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflugers Arch. 1971;326(4):341–356. doi: 10.1007/BF00586998. [DOI] [PubMed] [Google Scholar]
  9. Duhm J., Gerlach E. On the mechanisms of the hypoxia-induced increase of 2,3-diphosphoglycerate in erythrocytes. Studies on rat erythrocytes in vivo and on human erythrocytes in vitro. Pflugers Arch. 1971;326(3):254–269. doi: 10.1007/BF00592506. [DOI] [PubMed] [Google Scholar]
  10. Fell D. A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992 Sep 1;286(Pt 2):313–330. doi: 10.1042/bj2860313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerber G., Berger H., Jänig G. R., Rapoport S. M. Interaction of haemoglobin with ions. Quantitative description of the state of magnesium, adenosine 5'-triphosphate, 2,3-bisphosphoglycerate, and human haemoglobin under simulated intracellular conditions. Eur J Biochem. 1973 Oct 18;38(3):563–571. doi: 10.1111/j.1432-1033.1973.tb03091.x. [DOI] [PubMed] [Google Scholar]
  12. Gupta R. K., Benovic J. L., Rose Z. B. The determination of the free magnesium level in the human red blood cell by 31P NMR. J Biol Chem. 1978 Sep 10;253(17):6172–6176. [PubMed] [Google Scholar]
  13. Hamasaki N., Asakura T., Minakami S. Effect of oxygen tension on glycolysis in human erythrocytes. J Biochem. 1970 Aug;68(2):157–161. doi: 10.1093/oxfordjournals.jbchem.a129341. [DOI] [PubMed] [Google Scholar]
  14. Hamasaki N., Rose Z. B. The binding of phosphorylated red cell metabolites to human hemoglobin A. J Biol Chem. 1974 Dec 25;249(24):7896–7901. [PubMed] [Google Scholar]
  15. Harken A. H. The surgical significance of the oxyhemoglobin dissociation curve. Surg Gynecol Obstet. 1977 Jun;144(6):935–955. [PubMed] [Google Scholar]
  16. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem. 1974 Feb 15;42(1):97–105. doi: 10.1111/j.1432-1033.1974.tb03319.x. [DOI] [PubMed] [Google Scholar]
  17. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  18. Heinrich R., Rapoport T. A. Mathematical analysis of multienzyme systems. II. Steady state and transient control. Biosystems. 1975 Jul;7(1):130–136. doi: 10.1016/0303-2647(75)90050-7. [DOI] [PubMed] [Google Scholar]
  19. Hofmeyr J. H., Cornish-Bowden A., Rohwer J. M. Taking enzyme kinetics out of control; putting control into regulation. Eur J Biochem. 1993 Mar 15;212(3):833–837. doi: 10.1111/j.1432-1033.1993.tb17725.x. [DOI] [PubMed] [Google Scholar]
  20. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  21. Labotka R. J. Measurement of intracellular pH and deoxyhemoglobin concentration in deoxygenated erythrocytes by phosphorus-31 nuclear magnetic resonance. Biochemistry. 1984 Nov 6;23(23):5549–5555. doi: 10.1021/bi00318a026. [DOI] [PubMed] [Google Scholar]
  22. Lenfant C., Torrance J. D., Reynafarje C. Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol. 1971 May;30(5):625–631. doi: 10.1152/jappl.1971.30.5.625. [DOI] [PubMed] [Google Scholar]
  23. Meldon J. H. Blood gas transport and 2,3-DPG. Adv Exp Med Biol. 1985;191:63–73. doi: 10.1007/978-1-4684-3291-6_5. [DOI] [PubMed] [Google Scholar]
  24. Momsen G., Vestergaard-Bogind B. Human erythrocyte 2,3-diphosphoglycerate metabolism. Influence of 1,3-diphosphoglycerate and Pi. In vitro studies at low pH with computer simulations. Arch Biochem Biophys. 1978 Sep;190(1):67–84. doi: 10.1016/0003-9861(78)90254-0. [DOI] [PubMed] [Google Scholar]
  25. Mulquiney P. J., Kuchel P. W. Model of the pH-dependence of the concentrations of complexes involving metabolites, haemoglobin and magnesium ions in the human erythrocyte. Eur J Biochem. 1997 Apr 1;245(1):71–83. doi: 10.1111/j.1432-1033.1997.00071.x. [DOI] [PubMed] [Google Scholar]
  26. Raftos J. E., Bulliman B. T., Kuchel P. W. Evaluation of an electrochemical model of erythrocyte pH buffering using 31P nuclear magnetic resonance data. J Gen Physiol. 1990 Jun;95(6):1183–1204. doi: 10.1085/jgp.95.6.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Raftos J. E., Chapman B. E., Kuchel P. W., Lovric V. A., Stewart I. M. Intra- and extraerythrocyte pH at 37 degrees C and during long term storage at 4 degrees C: 31P NMR measurements and an electrochemical model of the system. Haematologia (Budap) 1986;19(4):251–268. [PubMed] [Google Scholar]
  28. Rapoport I., Berger H., Elsner R., Rapoport S. PH-dependent changes of 2,3-bisphosphoglycerate in human red cells during transitional and steady states in vitro. Eur J Biochem. 1977 Mar 1;73(2):421–427. doi: 10.1111/j.1432-1033.1977.tb11333.x. [DOI] [PubMed] [Google Scholar]
  29. Rapoport T. A., Heinrich R., Jacobasch G., Rapoport S. A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur J Biochem. 1974 Feb 15;42(1):107–120. doi: 10.1111/j.1432-1033.1974.tb03320.x. [DOI] [PubMed] [Google Scholar]
  30. Rapoport T. A., Heinrich R., Rapoport S. M. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes. Biochem J. 1976 Feb 15;154(2):449–469. doi: 10.1042/bj1540449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rapoprot I., Berger H., Rapoport S. M., Elsner R., Gerber G. Response of the glycolysis of human erythrocytes to the transition from the oxygenated to the deoxygenated state at constant intracellular pH. Biochim Biophys Acta. 1976 Mar 25;428(1):193–204. doi: 10.1016/0304-4165(76)90120-3. [DOI] [PubMed] [Google Scholar]
  32. Rose Z. B. Effects of salts and pH on the rate of erythrocyte diphosphoglycerate mutase. Arch Biochem Biophys. 1973 Oct;158(2):903–910. doi: 10.1016/0003-9861(73)90585-7. [DOI] [PubMed] [Google Scholar]
  33. Rose Z. B., Liebowitz J. 2,3-diphosphoglycerate phosphatase from human erythrocytes. General properties and activation by anions. J Biol Chem. 1970 Jun;245(12):3232–3241. [PubMed] [Google Scholar]
  34. Rose Z. B. The purification and properties of diphosphoglycerate mutase from human erythrocytes. J Biol Chem. 1968 Sep 25;243(18):4810–4820. [PubMed] [Google Scholar]
  35. Schuster R., Holzhütter H. G., Jacobasch G. Interrelations between glycolysis and the hexose monophosphate shunt in erythrocytes as studied on the basis of a mathematical model. Biosystems. 1988;22(1):19–36. doi: 10.1016/0303-2647(88)90047-0. [DOI] [PubMed] [Google Scholar]
  36. Schuster R., Holzhütter H. G. Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells. Eur J Biochem. 1995 Apr 15;229(2):403–418. [PubMed] [Google Scholar]
  37. Waley S. G. A note on the kinetics of multi-enzyme systems. Biochem J. 1964 Jun;91(3):514–517. doi: 10.1042/bj0910514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES