Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):605–613.

Characterization and polyanion-binding properties of purified recombinant prion protein.

D B Brimacombe 1, A D Bennett 1, F S Wusteman 1, A C Gill 1, J C Dann 1, C J Bostock 1
PMCID: PMC1220501  PMID: 10477271

Abstract

Certain polysulphated polyanions have been shown to have prophylactic effects on the progression of transmissible spongiform encephalopathy disease, presumably because they bind to prion protein (PrP). Until now, the difficulty of obtaining large quantities of native PrP has precluded detailed studies of these interactions. We have over-expressed murine recombinant PrP (recPrP), lacking its glycophosphoinositol membrane anchor, in modified mammalian cells. Milligram quantities of secreted, soluble and partially glycosylated protein were purified under non-denaturing conditions and the identities of mature-length aglycosyl recPrP and two cleavage fragments were determined by electrospray MS. Binding was assessed by surface plasmon resonance techniques using both direct and competitive ligand-binding approaches. recPrP binding to immobilized polyanions was enhanced by divalent metal ions. Polyanion binding was strong and showed complex association and dissociation kinetics that were consistent with ligand-directed recPrP aggregation. The differences in the binding strengths of recPrP to pentosan polysulphate and to other sulphated polyanions were found to parallel their in vivo anti-scrapie and in vitro anti-scrapie-specific PrP formation potencies. When recPrP was immobilized by capture on metal-ion chelates it was found, contrary to expectation, that the addition of polyanions promoted the dissociation of the protein.

Full Text

The Full Text of this article is available as a PDF (197.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blochberger T. C., Cooper C., Peretz D., Tatzelt J., Griffith O. H., Baldwin M. A., Prusiner S. B. Prion protein expression in Chinese hamster ovary cells using a glutamine synthetase selection and amplification system. Protein Eng. 1997 Dec;10(12):1465–1473. doi: 10.1093/protein/10.12.1465. [DOI] [PubMed] [Google Scholar]
  2. Borza D. B., Morgan W. T. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by ph and metals. J Biol Chem. 1998 Mar 6;273(10):5493–5499. doi: 10.1074/jbc.273.10.5493. [DOI] [PubMed] [Google Scholar]
  3. Brown D. R., Qin K., Herms J. W., Madlung A., Manson J., Strome R., Fraser P. E., Kruck T., von Bohlen A., Schulz-Schaeffer W. The cellular prion protein binds copper in vivo. Nature. 1997 Dec 18;390(6661):684–687. doi: 10.1038/37783. [DOI] [PubMed] [Google Scholar]
  4. Cabacungan J. C., Ahmed A. I., Feeney R. E. Amine boranes as alternative reducing agents for reductive alkylation of proteins. Anal Biochem. 1982 Aug;124(2):272–278. doi: 10.1016/0003-2697(82)90038-0. [DOI] [PubMed] [Google Scholar]
  5. Caughey B., Raymond G. J. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol. 1993 Feb;67(2):643–650. doi: 10.1128/jvi.67.2.643-650.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen S. G., Teplow D. B., Parchi P., Teller J. K., Gambetti P., Autilio-Gambetti L. Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem. 1995 Aug 11;270(32):19173–19180. doi: 10.1074/jbc.270.32.19173. [DOI] [PubMed] [Google Scholar]
  7. Cockett M. I., Bebbington C. R., Yarranton G. T. High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (N Y) 1990 Jul;8(7):662–667. doi: 10.1038/nbt0790-662. [DOI] [PubMed] [Google Scholar]
  8. Cockett M. I., Bebbington C. R., Yarranton G. T. The use of engineered E1A genes to transactivate the hCMV-MIE promoter in permanent CHO cell lines. Nucleic Acids Res. 1991 Jan 25;19(2):319–325. doi: 10.1093/nar/19.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen F. E., Prusiner S. B. Pathologic conformations of prion proteins. Annu Rev Biochem. 1998;67:793–819. doi: 10.1146/annurev.biochem.67.1.793. [DOI] [PubMed] [Google Scholar]
  10. Farquhar C., Dickinson A., Bruce M. Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet. 1999 Jan 9;353(9147):117–117. doi: 10.1016/S0140-6736(98)05395-1. [DOI] [PubMed] [Google Scholar]
  11. Gabizon R., Meiner Z., Halimi M., Ben-Sasson S. A. Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J Cell Physiol. 1993 Nov;157(2):319–325. doi: 10.1002/jcp.1041570215. [DOI] [PubMed] [Google Scholar]
  12. Harris D. A., Huber M. T., van Dijken P., Shyng S. L., Chait B. T., Wang R. Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry. 1993 Feb 2;32(4):1009–1016. doi: 10.1021/bi00055a003. [DOI] [PubMed] [Google Scholar]
  13. Hornshaw M. P., McDermott J. R., Candy J. M. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun. 1995 Feb 15;207(2):621–629. doi: 10.1006/bbrc.1995.1233. [DOI] [PubMed] [Google Scholar]
  14. Hornshaw M. P., McDermott J. R., Candy J. M., Lakey J. H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun. 1995 Sep 25;214(3):993–999. doi: 10.1006/bbrc.1995.2384. [DOI] [PubMed] [Google Scholar]
  15. Hunter N., Dann J. C., Bennett A. D., Somerville R. A., McConnell I., Hope J. Are Sinc and the PrP gene congruent? Evidence from PrP gene analysis in Sinc congenic mice. J Gen Virol. 1992 Oct;73(Pt 10):2751–2755. doi: 10.1099/0022-1317-73-10-2751. [DOI] [PubMed] [Google Scholar]
  16. Kocisko D. A., Come J. H., Priola S. A., Chesebro B., Raymond G. J., Lansbury P. T., Caughey B. Cell-free formation of protease-resistant prion protein. Nature. 1994 Aug 11;370(6489):471–474. doi: 10.1038/370471a0. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  18. Margalit H., Fischer N., Ben-Sasson S. A. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem. 1993 Sep 15;268(26):19228–19231. [PubMed] [Google Scholar]
  19. McBride P. A., Wilson M. I., Eikelenboom P., Tunstall A., Bruce M. E. Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice. Exp Neurol. 1998 Feb;149(2):447–454. doi: 10.1006/exnr.1997.6740. [DOI] [PubMed] [Google Scholar]
  20. Merz P. A., Somerville R. A., Wisniewski H. M., Manuelidis L., Manuelidis E. E. Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature. 1983 Dec 1;306(5942):474–476. doi: 10.1038/306474a0. [DOI] [PubMed] [Google Scholar]
  21. Miura T., Hori-i A., Takeuchi H. Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 1996 Nov 4;396(2-3):248–252. doi: 10.1016/0014-5793(96)01104-0. [DOI] [PubMed] [Google Scholar]
  22. Multhaup G., Bush A. I., Pollwein P., Masters C. L. Interaction between the zinc (II) and the heparin binding site of the Alzheimer's disease beta A4 amyloid precursor protein (APP). FEBS Lett. 1994 Nov 28;355(2):151–154. doi: 10.1016/0014-5793(94)01176-1. [DOI] [PubMed] [Google Scholar]
  23. Multhaup G., Mechler H., Masters C. L. Characterization of the high affinity heparin binding site of the Alzheimer's disease beta A4 amyloid precursor protein (APP) and its enhancement by zinc(II). J Mol Recognit. 1995 Jul-Aug;8(4):247–257. doi: 10.1002/jmr.300080403. [DOI] [PubMed] [Google Scholar]
  24. Olson S. T., Frances-Chmura A. M., Swanson R., Björk I., Zettlmeissl G. Effect of individual carbohydrate chains of recombinant antithrombin on heparin affinity and on the generation of glycoforms differing in heparin affinity. Arch Biochem Biophys. 1997 May 15;341(2):212–221. doi: 10.1006/abbi.1997.9973. [DOI] [PubMed] [Google Scholar]
  25. Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., Mehlhorn I., Huang Z., Fletterick R. J., Cohen F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962–10966. doi: 10.1073/pnas.90.23.10962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pan K. M., Stahl N., Prusiner S. B. Purification and properties of the cellular prion protein from Syrian hamster brain. Protein Sci. 1992 Oct;1(10):1343–1352. doi: 10.1002/pro.5560011014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pauly P. C., Harris D. A. Copper stimulates endocytosis of the prion protein. J Biol Chem. 1998 Dec 11;273(50):33107–33110. doi: 10.1074/jbc.273.50.33107. [DOI] [PubMed] [Google Scholar]
  28. Pergami P., Jaffe H., Safar J. Semipreparative chromatographic method to purify the normal cellular isoform of the prion protein in nondenatured form. Anal Biochem. 1996 Apr 5;236(1):63–73. doi: 10.1006/abio.1996.0132. [DOI] [PubMed] [Google Scholar]
  29. Prusiner S. B., Scott M. R., DeArmond S. J., Cohen F. E. Prion protein biology. Cell. 1998 May 1;93(3):337–348. doi: 10.1016/s0092-8674(00)81163-0. [DOI] [PubMed] [Google Scholar]
  30. Rogers M., Yehiely F., Scott M., Prusiner S. B. Conversion of truncated and elongated prion proteins into the scrapie isoform in cultured cells. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3182–3186. doi: 10.1073/pnas.90.8.3182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct. 1997;26:541–566. doi: 10.1146/annurev.biophys.26.1.541. [DOI] [PubMed] [Google Scholar]
  32. Shyng S. L., Lehmann S., Moulder K. L., Harris D. A. Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J Biol Chem. 1995 Dec 15;270(50):30221–30229. doi: 10.1074/jbc.270.50.30221. [DOI] [PubMed] [Google Scholar]
  33. Somerville R. A., Birkett C. R., Farquhar C. F., Hunter N., Goldmann W., Dornan J., Grover D., Hennion R. M., Percy C., Foster J. Immunodetection of PrPSc in spleens of some scrapie-infected sheep but not BSE-infected cows. J Gen Virol. 1997 Sep;78(Pt 9):2389–2396. doi: 10.1099/0022-1317-78-9-2389. [DOI] [PubMed] [Google Scholar]
  34. Stöckel J., Safar J., Wallace A. C., Cohen F. E., Prusiner S. B. Prion protein selectively binds copper(II) ions. Biochemistry. 1998 May 19;37(20):7185–7193. doi: 10.1021/bi972827k. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES