Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):647–653.

Interaction with amylopectin influences the ability of granule-bound starch synthase I to elongate malto-oligosaccharides.

K Denyer 1, D Waite 1, A Edwards 1, C Martin 1, A M Smith 1
PMCID: PMC1220506  PMID: 10477276

Abstract

This paper examines the properties in soluble form of two isoforms of starch synthase. One of these, granule-bound starch synthase I (GBSSI), is responsible for the synthesis of amylose inside the amylopectin matrix of the starch granule in vivo. The other, starch synthase II (SSII), is involved in amylopectin synthesis. Both isoforms can use amylopectin and malto-oligosaccharide as substrates in vitro. As well as acting as a substrate for GBSSI, amylopectin acts as an effector of this isoform, increasing the rate at which it elongates malto-oligosaccharides and promoting a processive rather than distributive mode of elongation of these compounds. The affinity of GBSSI for amylopectin as an effector is greater than its affinity for amylopectin as a substrate. The rate and mode of elongation of malto-oligosaccharides by SSII are not influenced by amylopectin. These results suggest that specific interaction with amylopectin in the matrix of the starch granule is a unique property of GBSSI and is critical in determining the nature of its products.

Full Text

The Full Text of this article is available as a PDF (137.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel G. J., Springer F., Willmitzer L., Kossmann J. Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). Plant J. 1996 Dec;10(6):981–991. doi: 10.1046/j.1365-313x.1996.10060981.x. [DOI] [PubMed] [Google Scholar]
  2. Baba T., Nishihara M., Mizuno K., Kawasaki T., Shimada H., Kobayashi E., Ohnishi S., Tanaka K., Arai Y. Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol. 1993 Oct;103(2):565–573. doi: 10.1104/pp.103.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Denyer K., Waite D., Motawia S., Møller B. L., Smith A. M. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochem J. 1999 May 15;340(Pt 1):183–191. [PMC free article] [PubMed] [Google Scholar]
  4. Dry I., Smith A., Edwards A., Bhattacharyya M., Dunn P., Martin C. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant J. 1992 Mar;2(2):193–202. [PubMed] [Google Scholar]
  5. Edwards A., Marshall J., Denyer K., Sidebottom C., Visser R. G., Martin C., Smith A. M. Evidence that a 77-kilodalton protein from the starch of pea embryos is an isoform of starch synthase that is both soluble and granule bound. Plant Physiol. 1996 Sep;112(1):89–97. doi: 10.1104/pp.112.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edwards A., Marshall J., Sidebottom C., Visser R. G., Smith A. M., Martin C. Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J. 1995 Aug;8(2):283–294. doi: 10.1046/j.1365-313x.1995.08020283.x. [DOI] [PubMed] [Google Scholar]
  7. Gao M., Wanat J., Stinard P. S., James M. G., Myers A. M. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell. 1998 Mar;10(3):399–412. doi: 10.1105/tpc.10.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harn C., Knight M., Ramakrishnan A., Guan H., Keeling P. L., Wasserman B. P. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. Plant Mol Biol. 1998 Jul;37(4):639–649. doi: 10.1023/a:1006079009072. [DOI] [PubMed] [Google Scholar]
  9. Imparl-Radosevich J. M., Li P., Zhang L., McKean A. L., Keeling P. L., Guan H. Purification and characterization of maize starch synthase I and its truncated forms. Arch Biochem Biophys. 1998 May 1;353(1):64–72. doi: 10.1006/abbi.1998.0613. [DOI] [PubMed] [Google Scholar]
  10. Knight M. E., Harn C., Lilley C. E., Guan H., Singletary G. W., MuForster C., Wasserman B. P., Keeling P. L. Molecular cloning of starch synthase I from maize (W64) endosperm and expression in Escherichia coli. Plant J. 1998 Jun;14(5):613–622. doi: 10.1046/j.1365-313x.1998.00150.x. [DOI] [PubMed] [Google Scholar]
  11. Marshall J., Sidebottom C., Debet M., Martin C., Smith A. M., Edwards A. Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell. 1996 Jul;8(7):1121–1135. doi: 10.1105/tpc.8.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Preiss J., Sivak M. N. Biochemistry, molecular biology and regulation of starch synthesis. Genet Eng (N Y) 1998;20:177–223. doi: 10.1007/978-1-4899-1739-3_10. [DOI] [PubMed] [Google Scholar]
  13. Smith A. M., Denyer K., Martin C. THE SYNTHESIS OF THE STARCH GRANULE. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):67–87. doi: 10.1146/annurev.arplant.48.1.67. [DOI] [PubMed] [Google Scholar]
  14. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  15. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  16. Wessler S. R., Baran G., Varagona M., Dellaporta S. L. Excision of Ds produces waxy proteins with a range of enzymatic activities. EMBO J. 1986 Oct;5(10):2427–2432. doi: 10.1002/j.1460-2075.1986.tb04517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. van de Wal M., D'Hulst C., Vincken J. P., Buléon A., Visser R., Ball S. Amylose is synthesized in vitro by extension of and cleavage from amylopectin. J Biol Chem. 1998 Aug 28;273(35):22232–22240. doi: 10.1074/jbc.273.35.22232. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES