Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):667–675.

The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses.

C Mao 1, J D Saba 1, L M Obeid 1
PMCID: PMC1220508  PMID: 10477278

Abstract

We have identified YSR2 and YSR3 of Saccharomyces cerevisiae as genes encoding dihydrosphingosine-1-phosphate phophatases which are involved in regulation of sphingolipid metabolism [Mao, Wadleigh, Jenkins, Hannun and Obeid (1997) J. Biol. Chem. 272, 28690-28694]. In this study, we explored the physiological roles that these enzymes may have in S. cerevisiae. Deletion of either YSR2, YSR3 or both did not affect viability or growth rate of yeast cells. However, overexpression of YSR2 significantly prolonged the doubling time of cell growth, whereas overexpression of YSR3 affected cell growth only slightly. Cell cycle analysis suggested that overexpression of either YSR2 or, to a lesser extent, YSR3 caused cell cycle arrest at the G1 phase. Disruption of YSR2, but not YSR3, conferred increased thermotolerance. On the other hand, overexpression of either YSR2 or YSR3 diminished thermotolerance. Using labelled dihydrosphingosine and dihydrosphingosine-1-P (DHS-1-P), we found that overexpression of YSR2 significantly increased ceramide formation, whereas deletion of YSR2, YSR3, or both, accumulated DHS-1-P, and deletion of YSR2 decreased ceramide formation. Together, these results show that the phenotypes of YSR2 are associated with changes in endogenous levels of the different sphingolipids. Green fluorescent protein tagging showed that in the exponentially growing cells, YSR2 and YSR3 had the same cellular localization to endoplasmic reticulum. However, YSR2 and YSR3 differ in mRNA levels: YSR2 had significantly higher mRNA levels than YSR3. This discrepancy might result in the functional differences that these proteins exhibited. In addition, this study implicates sphingolipids and their metabolism in the regulation of growth and heat stress responses of the yeast S. cerevisiae.

Full Text

The Full Text of this article is available as a PDF (242.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buehrer B. M., Bell R. M. Sphingosine kinase: properties and cellular functions. Adv Lipid Res. 1993;26:59–67. [PubMed] [Google Scholar]
  2. Cuvillier O., Pirianov G., Kleuser B., Vanek P. G., Coso O. A., Gutkind S., Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996 Jun 27;381(6585):800–803. doi: 10.1038/381800a0. [DOI] [PubMed] [Google Scholar]
  3. De Ceuster P., Mannaerts G. P., Van Veldhoven P. P. Identification and subcellular localization of sphinganine-phosphatases in rat liver. Biochem J. 1995 Oct 1;311(Pt 1):139–146. doi: 10.1042/bj3110139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dickson R. C., Nagiec E. E., Skrzypek M., Tillman P., Wells G. B., Lester R. L. Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem. 1997 Nov 28;272(48):30196–30200. doi: 10.1074/jbc.272.48.30196. [DOI] [PubMed] [Google Scholar]
  5. Fishbein J. D., Dobrowsky R. T., Bielawska A., Garrett S., Hannun Y. A. Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem. 1993 May 5;268(13):9255–9261. [PubMed] [Google Scholar]
  6. Gottlieb D., Heideman W., Saba J. D. The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae. Mol Cell Biol Res Commun. 1999 Apr;1(1):66–71. doi: 10.1006/mcbr.1999.0109. [DOI] [PubMed] [Google Scholar]
  7. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  8. Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
  9. Jenkins G. M., Richards A., Wahl T., Mao C., Obeid L., Hannun Y. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem. 1997 Dec 19;272(51):32566–32572. doi: 10.1074/jbc.272.51.32566. [DOI] [PubMed] [Google Scholar]
  10. Lee J. Y., Hannun Y. A., Obeid L. M. Ceramide inactivates cellular protein kinase Calpha. J Biol Chem. 1996 May 31;271(22):13169–13174. doi: 10.1074/jbc.271.22.13169. [DOI] [PubMed] [Google Scholar]
  11. Madden K., Sheu Y. J., Baetz K., Andrews B., Snyder M. SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science. 1997 Mar 21;275(5307):1781–1784. doi: 10.1126/science.275.5307.1781. [DOI] [PubMed] [Google Scholar]
  12. Mandala S. M., Thornton R., Tu Z., Kurtz M. B., Nickels J., Broach J., Menzeleev R., Spiegel S. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):150–155. doi: 10.1073/pnas.95.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mao C., Wadleigh M., Jenkins G. M., Hannun Y. A., Obeid L. M. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem. 1997 Nov 7;272(45):28690–28694. doi: 10.1074/jbc.272.45.28690. [DOI] [PubMed] [Google Scholar]
  14. Merrill A. H., Jr, Schmelz E. M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A., Wang E. Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol. 1997 Jan;142(1):208–225. doi: 10.1006/taap.1996.8029. [DOI] [PubMed] [Google Scholar]
  15. Merrill A. H., Jr, Sereni A. M., Stevens V. L., Hannun Y. A., Bell R. M., Kinkade J. M., Jr Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem. 1986 Sep 25;261(27):12610–12615. [PubMed] [Google Scholar]
  16. Nickels J. T., Broach J. R. A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae. Genes Dev. 1996 Feb 15;10(4):382–394. doi: 10.1101/gad.10.4.382. [DOI] [PubMed] [Google Scholar]
  17. Obeid L. M., Linardic C. M., Karolak L. A., Hannun Y. A. Programmed cell death induced by ceramide. Science. 1993 Mar 19;259(5102):1769–1771. doi: 10.1126/science.8456305. [DOI] [PubMed] [Google Scholar]
  18. Oh C. S., Toke D. A., Mandala S., Martin C. E. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem. 1997 Jul 11;272(28):17376–17384. doi: 10.1074/jbc.272.28.17376. [DOI] [PubMed] [Google Scholar]
  19. Olivera A., Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 1993 Oct 7;365(6446):557–560. doi: 10.1038/365557a0. [DOI] [PubMed] [Google Scholar]
  20. Paulovich A. G., Hartwell L. H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell. 1995 Sep 8;82(5):841–847. doi: 10.1016/0092-8674(95)90481-6. [DOI] [PubMed] [Google Scholar]
  21. Qie L., Nagiec M. M., Baltisberger J. A., Lester R. L., Dickson R. C. Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long chain bases into sphingolipids. J Biol Chem. 1997 Jun 27;272(26):16110–16117. doi: 10.1074/jbc.272.26.16110. [DOI] [PubMed] [Google Scholar]
  22. Ronne H., Carlberg M., Hu G. Z., Nehlin J. O. Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol Cell Biol. 1991 Oct;11(10):4876–4884. doi: 10.1128/mcb.11.10.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saba J. D., Nara F., Bielawska A., Garrett S., Hannun Y. A. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem. 1997 Oct 17;272(42):26087–26090. doi: 10.1074/jbc.272.42.26087. [DOI] [PubMed] [Google Scholar]
  24. Spiegel S., Foster D., Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol. 1996 Apr;8(2):159–167. doi: 10.1016/s0955-0674(96)80061-5. [DOI] [PubMed] [Google Scholar]
  25. Spiegel S., Milstien S. Sphingoid bases and phospholipase D activation. Chem Phys Lipids. 1996 May 24;80(1-2):27–36. doi: 10.1016/0009-3084(96)02543-1. [DOI] [PubMed] [Google Scholar]
  26. Sugiya H., Furuyama S. Sphingosine stimulates calcium mobilization in rat parotid acinar cells. FEBS Lett. 1991 Jul 29;286(1-2):113–116. doi: 10.1016/0014-5793(91)80953-z. [DOI] [PubMed] [Google Scholar]
  27. Zhang H., Desai N. N., Olivera A., Seki T., Brooker G., Spiegel S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol. 1991 Jul;114(1):155–167. doi: 10.1083/jcb.114.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van Veldhoven P. P., Mannaerts G. P. Sphingosine-phosphate lyase. Adv Lipid Res. 1993;26:69–98. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES